
Mechatronic Systems MechBot Sensor Overview, Page 1 of 16

Devantech SRF08 UltraSonic Ranger

This Devantech high performance ultrasonic range finder is compact and measures an amazingly wide
range from 3cm to 6m. The SRF08 interfaces to your microcontroller via the industry standard IIC
bus. This ranger is perfect for your robot, or any other projects requiring accurate ranging information.
 There is even a built-in light sensor on the front of the module. You can also get a nifty Lynxmotion
SRF08 Housing for one ranger or for two rangers.

Specifications
Beam Pattern see graph
Voltage 5v
Current 15mA Typ. 3mA Standby
Frequency 40KHz
Maximum Range 6 m
Minimum Range 3 cm
Max Analogue
Gain Variable to 1025 in 32 steps

Connection Standard IIC Bus
Light Sensor Front facing light sensor

Timing Fully timed echo, freeing host computer of
task

Echo Multiple echo - keeps looking after first echo
Units Range reported n uS, mm or inches
Weight 0.4 oz.
Size 43mm w x 20mm d x 17mm h

Specifications subject to change without notice

Mechatronic Systems MechBot Sensor Overview, Page 2 of 16

Beam Pattern

Dimensions

Mechatronic Systems MechBot Sensor Overview, Page 3 of 16

Purchasing the SRF08
 Acroname (www.acroname.com)
 Price: $52.00 each
 Part Number: R145-SRF08

Technical Specifications for the SRF08
(Below is from http://www.robot-electronics.co.uk/htm/srf08tech.shtml), Gerry
gerry@robot-electronics.co.uk

Communication with the SRF08 ultrasonic rangefinder is via the I2C bus. This is available on popular
controllers such as the OOPic and Stamp BS2p, as well as a wide variety of micro-controllers. To the
programmer the SRF08 behaves in the same way as the ubiquitous 24xx series eeprom's, except that
the I2C address is different. The default shipped address of the SRF08 is 0xE0. It can be changed by
the user to any of 16 addresses E0, E2, E4, E6, E8, EA, EC, EE, F0, F2, F4, F6, F8, FA, FC or FE,
therefore up to 16 sonar's can be used. In addition to the above addresses, all sonar's on the I2C bus
will respond to address 0 - the General Broadcast address. This means that writing a ranging command
to I2C address 0 (0x00) will start all sonar's ranging at the same time. This should be useful in ANN
Mode (See below). The results must be read individually from each sonar's real address. We have
examples of using the SRF08 module with a wide range of popular controllers.

Connections
The "Do Not Connect" pin should be left unconnected. It is actually the CPU MCLR line and is used
once only in our workshop to program the PIC16F872 on-board after assembly, and has an internal
pull-up resistor. The SCL and SDA lines should each have a pull-up resistor to +5v somewhere on the
I2C bus. You only need one pair of resistors, not a pair for every module. They are normally located
with the bus master rather than the slaves. The SRF08 is always a slave - never a bus master. If you
need them, I recommend 1.8k resistors. Some modules such as the OOPic already have pull-up
resistors and you do not need to add any more.

Registers
 The SRF08 appears as a set of 36 registers.

Mechatronic Systems MechBot Sensor Overview, Page 4 of 16

Location Read Write

0 Software
Revision Command Register

1 Light Sensor Max Gain Register
(default 31)

2 1st Echo High
Byte

Range Register (default
255)

3 1st Echo Low
Byte N/A

~~~~ ~~~~ ~~~~ 

34 17th Echo High 
Byte N/A 

35 17th Echo Low 
Byte N/A 

Only locations 0, 1 and 2 can be written to. Location 0 is the command register and is used to start a 
ranging session. It cannot be read. Reading from location 0 returns the SRF08 software revision.  By 
default, the ranging lasts for 65mS, but can be changed by writing to the range register at location 2. If 
you do so, then you will likely need to change the analogue gain by writing to location 1. See the 
Changing Range and Analogue Gain sections below. 

Location 1 is the onboard light sensor. This data is updated every time a new ranging command has 
completed and can be read when range data is read. The next two locations, 2 and 3, are the 16bit 
unsigned result from the latest ranging - high byte first. The meaning of this value depends on the 
command used, and is either the range in inches, or the range in cm or the flight time in uS. A value of 
zero indicates that no objects were detected. There are up to a further 16 results indicating echo's from 
more distant objects.  

Commands 
The are three commands to initiate a ranging (80 to 82), to return the result in inches, centimeters or 
microseconds. There is also an ANN mode (Artificial Neural Network) mode which is described later 
and a set of commands to change the I2C address. 

Command 
Decimal Hex Action 

80 0x50 Ranging Mode - Result in inches 
81 0x51 Ranging Mode - Result in centimeters 
82 0x52 Ranging Mode - Result in micro-seconds 
      

83 0x53 ANN Mode - Result in inches 
84 0x54 ANN Mode - Result in centimeters 
85 0x55 ANN Mode - Result in micro-seconds 
      



Mechatronic Systems  MechBot Sensor Overview, Page 5 of 17 

160 0xA0 1st in sequence to change I2C address 
165 0xA5 3rd in sequence to change I2C address 
170 0xAA 2nd in sequence to change I2C address 

Ranging Mode 
To initiate a ranging, write one of the above commands to the command register and wait the required 
amount of time for completion and read as many results as you wish. The echo buffer is cleared at the 
start of each ranging. The first echo range is placed in locations 2,3. the second in 4,5, etc. If a location 
(high and low bytes) is 0, then there will be no further reading in the rest of the registers. The default 
and recommended time for completion of ranging is 65mS, however you can shorten this by writing to 
the range register before issuing a ranging command. Light sensor data at location 1 will also have 
been updated after a ranging command.  

ANN Mode 
ANN mode (Artificial Neural Network) is designed to provide the multi echo data in a way that is 
easier to input to a neural network, at least I hope it is - I've not actually done it yet. ANN mode 
provides a 32 byte buffer (locations 4 to 35 inclusive) where each byte represents the 65536uS 
maximum flight time divided into 32 chunks of 2048uS each - equivalent to about 352mm of range. If 
an echo is received within a bytes time slot then it will be set to no-zero, otherwise it will be zero. So if 
an echo is received from within the first 352mm, location 4 will be non-zero. If an object is detected 
3m away the location 12 will be non-zero (3000/352 = 8) (8+4=12). Arranging the data like this should 
be better for a neural net than the other formats. The input to your network should be 0 if the byte is 
zero and 1 if its non-zero. I have a SOFM (Self Organizing Feature Map) in mind for the neural net, 
but will hopefully be useful for any type.  

Location 4 Location 5 Location 6 Location 7 Locations 8 - 35 
0 - 352mm 353 - 705mm 706 - 1057mm 1058 - 1410mm and so on 

Locations 2,3 contain the range of the nearest object converted to inches, cm or uS and is the same as 
for Ranging Mode. 

Checking for Completion of Ranging 
You do not have to use a timer on your own controller to wait for ranging to finish. You can take 
advantage of the fact that the SRF08 will not respond to any I2C activity whilst ranging. Therefore, if 
you try to read from the SRF08 (we use the software revision number a location 0) then you will get 
255 (0xFF) whilst ranging. This is because the I2C data line (SDA) is pulled high if nothing is driving 
it. As soon as the ranging is complete the SRF08 will again respond to the I2C bus, so just keep 
reading the register until its not 255 (0xFF) anymore. You can then read the sonar data. Your 
controller can take advantage of this to perform other tasks while the SRF08 is ranging.  

Changing the Range 
The maximum range of the SRF08 is set by an internal timer. By default, this is 65mS or the 
equivalent of 11 metres of range. This is much further than the 6 metres the SRF08  is actually capable 
of. It is possible to reduce the time the SRF08 listens for an echo, and hence the range, by writing to 
the range register at location 2. The range can be set in steps of about 43mm (0.043m or 1.68 inches) 
up to 11 metres.  
The range is ((Range Register x 43mm) + 43mm) so setting the Range Register to 0 (0x00) gives a 
maximum range of 43mm. Setting the Range Register to 1 (0x01) gives a maximum range of 86mm. 
More usefully, 24 (0x18) gives a range of 1 metre and 140 (0x8C) is 6 metres. Setting 255 (0xFF) 
gives the original 11 metres (255 x 43 + 43 is 11008mm). There are two reasons you may wish to 
reduce the range. 



Mechatronic Systems  MechBot Sensor Overview, Page 6 of 17 

1. To get at the range information quicker 
2. To be able to fire the SRF08 at a faster rate. 
If you only wish to get at the range information a bit sooner and will continue to fire the SRF08 at 
65ms of slower, then all will be well. However if you wish to fire the SRF08 at a faster rate than 
65mS, you will definitely need to reduce the gain - see next section. 
The range is set to maximum every time the SRF08 is powered-up. If you need a different range, 
change it once as part of your system initialization code. 

Analogue Gain 
The analogue gain register sets the Maximum gain of the analogue stages. To set the maximum gain, 
just write one of these values to the gain register at location 1. During a ranging, the analogue gain 
starts off at its minimum value of 94. This is increased at approx. 70uS intervals up to the maximum 
gain setting, set by register 1. Maximum possible gain is reached after about 390mm of range. The 
purpose of providing a limit to the maximum gain is to allow you to fire the sonar more rapidly than 
65mS. Since the ranging can be very short, a new ranging can be initiated as soon as the previous 
range data has been read. A potential hazard with this is that the second ranging may pick up a distant 
echo returning from the previous "ping", give a false result of a close by object when there is none. To 
reduce this possibility, the maximum gain can be reduced to limit the modules sensitivity to the weaker 
distant echo, whilst still able to detect close by objects. The maximum gain setting is stored only in the 
CPU's RAM and is initialized to maximum on power-up, so if you only want do a ranging every 65mS, 
or longer, you can ignore the Range and Gain Registers. 
Note - Effective in Ranging Mode only, in ANN mode, gain is controlled automatically.  

Gain Register 
Decimal Hex Maximum Analogue Gain 

0 0x00 Set Maximum Analogue Gain to 94 
1 0x01 Set Maximum Analogue Gain to 97 
2 0x02 Set Maximum Analogue Gain to 100
3 0x03 Set Maximum Analogue Gain to 103
4 0x04 Set Maximum Analogue Gain to 107
5 0x05 Set Maximum Analogue Gain to 110
6 0x06 Set Maximum Analogue Gain to 114
7 0x07 Set Maximum Analogue Gain to 118
8 0x08 Set Maximum Analogue Gain to 123
9 0x09 Set Maximum Analogue Gain to 128

10 0x0A Set Maximum Analogue Gain to 133
11 0x0B Set Maximum Analogue Gain to 139
12 0x0C Set Maximum Analogue Gain to 145
13 0x0D Set Maximum Analogue Gain to 152
14 0x0E Set Maximum Analogue Gain to 159
15 0x0F Set Maximum Analogue Gain to 168
16 0x10 Set Maximum Analogue Gain to 177
17 0x11 Set Maximum Analogue Gain to 187
18 0x12 Set Maximum Analogue Gain to 199
19 0x13 Set Maximum Analogue Gain to 212
20 0x14 Set Maximum Analogue Gain to 227
21 0x15 Set Maximum Analogue Gain to 245
22 0x16 Set Maximum Analogue Gain to 265
23 0x17 Set Maximum Analogue Gain to 288
24 0x18 Set Maximum Analogue Gain to 317



Mechatronic Systems  MechBot Sensor Overview, Page 7 of 17 

25 0x18 Set Maximum Analogue Gain to 352
26 0x20 Set Maximum Analogue Gain to 395
27 0x21 Set Maximum Analogue Gain to 450
28 0x22 Set Maximum Analogue Gain to 524
29 0x23 Set Maximum Analogue Gain to 626
30 0x24 Set Maximum Analogue Gain to 777
31 0x25 Set Maximum Analogue Gain to 1025 

Note that the relationship between the Gain Register setting and the actual gain is not a linear one. 
Also there is no magic formula to say "use this gain setting with that range setting". It depends on the 
size, shape and material of the object and what else is around in the room. Try playing with different 
settings until you get the result you want. If you appear to get false readings, it may be echo's from 
previous "pings", try going back to firing the SRF08 every 65mS or longer (slower).  
If you are in any doubt about the Range and Gain Registers, remember they are automatically set by 
the SRF08 to their default values when it is powered-up. You can ignore and forget about them and the 
SRF08 will work fine, detecting objects up to 6 metres away every 65mS or slower. 

Light Sensor 
The SRF08 has a light sensor on-board. A reading of the light intensity is made by the SRF08 each 
time a ranging takes place in either Ranging or ANN Modes ( The A/D conversion is actually done just 
before the "ping" whilst the +/- 10v generator is stabilizing). The reading increases as the brightness 
increases, so you will get a maximum value in bright light and minimum value in darkness. It should 
get close to 2-3 in complete darkness and up to about 248 (0xF8) in bright light. The light intensity can 
be read from the Light Sensor Register at  location 1 at the same time that you are reading the range 
data. 

LED 
The red LED is used to flash out a code for the I2C address on power-up (see below). It also gives a 
brief flash during the "ping" whilst ranging. 

Changing the I2C Bus Address 
To change the I2C address of the SRF08 you must have only one sonar on the bus. Write the 3 
sequence commands in the correct order followed by the address. Example; to change the address of a 
sonar currently at 0xE0 (the default shipped address) to 0xF2, write the following to address 0xE0; 
(0xA0, 0xAA, 0xA5, 0xF2 ). These commands must be sent in the correct sequence to change the I2C 
address, additionally, No other command may be issued in the middle of the sequence. The sequence 
must be sent to the command register at location 0, which means 4 separate write transactions on the 
I2C bus. When done, you should label the sonar with its address, however if you do forget, just power 
it up without sending any commands. The SRF08 will flash its address out on the LED. One long flash 
followed by a number of shorter flashes indicating its address. The flashing is terminated immediately 
on sending a command the SRF08. 

Address 
Decimal Hex Long Flash Short flashes 

224 E0 1 0 
226 E2 1 1 
228 E4 1 2 
230 E6 1 3 
232 E8 1 4 
234 EA 1 5 
236 EC 1 6 



Mechatronic Systems  MechBot Sensor Overview, Page 8 of 17 

238 EE 1 7 
240 F0 1 8 
242 F2 1 9 
244 F4 1 10 
246 F6 1 11 
248 F8 1 12 
250 FA 1 13 
252 FC 1 14 
254 FE 1 15 

Take care not to set more than one sonar to the same address, there will be a bus collision and very 
unpredictable results. 

Current Consumption 
Average current consumption measured on our prototype is around 12mA during ranging, and 3mA 
standby. The module will automatically go to standby mode after a ranging, whilst waiting for a new 
command on the I2C bus. The actual measured current profile is as follows;  

Operation Current Duration 
Ranging command received - Power 

on 275mA 3uS 

+/- 10v generator Stabilization 25mA 600uS 

8 cycles of 40kHz "ping" 40mA 200uS 

Ranging 11mA 65mS 
max 

Standby 3mA indefinite 

The above values are for guidance only, they are not tested on production units.  

 

Code 
 From http://www.robot-electronics.co.uk/htm/srf08bx24.shtml 

 Connecting Multiple SRF08 Sonar Modules to the BX-24  



Mechatronic Systems  MechBot Sensor Overview, Page 9 of 16 

 

Introduction 
The SRF08 modules use the I2C bus for communication. This example shows how to connect two 
SRF08's to the BX-24, however it is expandable to up 16 SRF08's on the I2C bus. The SDA (data) and 
SCL (clock) lines are connected to pins 13 and 14 on the BX-24. The BX-24 does not have I2C 
communication, so the example provided here uses a combination of bit bashing and the SHIFTIN and 
SHIFTOUT commands instead. 
The BX-24 internal 5v regulator is not suitable for powering much external circuitry. I therefore 
recommend you use a separate 5v regulator as shown below.. 

Circuit Schematic for connecting two SRF08 Sonar Modules to the BX-24 

 

The schematic above shows 1k8 pull-up resistors on the SCL and SDA lines to Vdd. This is for good 
noise immunity, however any value up to 4k7 should be OK. 



Mechatronic Systems  MechBot Sensor Overview, Page 10 of 16 

Changing the SRF08 I2C Address 
Before you can use the SRF08's you will need to re-program their I2C addresses from the default 
address of 0xE0 they are supplied with. The program below will do this. Make sure you only have one 
SRF08 connected when you do this. You only have to change the SRF08_NEW_ADDRESS constant 
in the program below to the address you want. For example if you want the SRF08 to be at hex address 
0xF2, then change SRF08_NEW_ADDRESS to read; 
 
Const SRF08_NEW_ADDRESS As Byte = $Hf2          ' Place new address for SRF08 here 
 
Now download the program to the BX-24, you will see rapid brief flashes on the Red Led on the 
SRF08 indicating that the change of address was successful. If you set your Monitor port on the PC, 
you will see the LDR and first range displayed on screen. It is wise to make a note of the new address 
on the SRF08 itself. It is easy to forget which is which otherwise. 
To use the example code described later on this page, set one SRF08 to address 0xE0 and the other to 
0xE2. The following program can be downloaded here. 

 

 
'*********************************************************** 
'**                                                       ** 
'**          I2C Routines for the Basic BX-24             ** 
'**        to change the I2C address of the SRF08         ** 
'**                                                       ** 
'**           Copyright 2002 - Devantech Ltd              ** 
'**    Commercial use of this software is prohibited      ** 
'**    Private and educational use only is permitted      ** 
'**                                                       ** 
'**        Written by Gerald Coe - February 2002          ** 
'**                                                       ** 
'*********************************************************** 

Const SRF08_NEW_ADDRESS As Byte = &He0           ' Place new address for SRF08 here 
'available addresses are: e0, e2, e4, e6, e8, ea, ec, ee 
'                         f0, f2, f4, f6, f8, fa, fc, fe 

Const SCL As Byte = 14                           ' I2C clock - choose any pins you wish for SCL and SDA 
Const SDA As Byte = 13                           ' I2C data 

Const GB As Byte = 0                             ' I2C General Broadcast address 
Const CmdReg As Byte = 0                         ' SRF08 command register 
Const LdrReg As Byte = 1                         ' Address of Light Sensor Register in SRF08 
Const RangeReg As Byte = 2                       ' Address of Range Register in SRF08 
Const RangeCmd As Byte = 81                      ' Ranging command - 80 for inches, 81 for cm, 82 for uS 

Dim I2cAck As Boolean                            ' Acknowledge flag 

Sub Main() 
Dim Ldr As Byte 
Dim Range As New UnsignedInteger 

    Call PutPin(SCL, bxOutputHigh) 



Mechatronic Systems  MechBot Sensor Overview, Page 11 of 16 

    Call PutPin(SDA, bxOutputHigh) 

    Call Delay(1.0)                              ' Delay just to be sure SRF08 is out of reset 
    Call I2cByteWrite(GB, CmdReg, &Ha0)          ' 1st command in address change sequence 
    Call I2cByteWrite(GB, CmdReg, &Haa)          ' 2nd command in address change sequence 
    Call I2cByteWrite(GB, CmdReg, &Ha5)          ' 3rd command in address change sequence 
    Call I2cByteWrite(GB, CmdReg, SRF08_NEW_ADDRESS) ' The new I2C address 

' That's the address changed, now perform SRF08 Ranging in an endless loop at the new address 
Do 
    Call I2cByteWrite(SRF08_NEW_ADDRESS, CmdReg, RangeCmd) ' Start Ranging in Cm 
    Call Delay(0.07)                                       ' 70mS wait for ranging to complete 
    Ldr = I2cByteRead(SRF08_NEW_ADDRESS, LdrReg)           ' Read light sensor 
    Range = I2cWordRead(SRF08_NEW_ADDRESS, RangeReg)       ' Read Range Register 
    debug.Print "LDR = "; CStr(Ldr); ", Range = "; CStr(Range) 
Loop 
End Sub 

'-------------------------------------------------------------------------------------------- 
' I2C subroutines follow 
'-------------------------------------------------------------------------------------------- 

' writes I2cData to I2cReg at I2cAddr 
Sub I2cByteWrite(ByVal I2cAddr As Byte, ByVal I2cReg As Byte, ByVal I2cData As Byte) 
    Call I2cStart() 
    Call I2cOutByte(I2cAddr)                  ' send device address 
    Call I2cOutByte(I2cReg)                   ' send register address 
    Call I2cOutByte(I2cData)                  ' send the data 
    Call I2cStop() 
End Sub 

Function I2CByteRead(ByVal I2cAddr As Byte, ByVal I2cReg As Byte) As Byte 
    Call I2cStart() 
    Call I2cOutByte(I2cAddr)                  ' send device address 
    Call I2cOutByte(I2cReg)                   ' send register address 
    Call I2cStart()                           ' repeated start 
    I2cAddr = I2cAddr+1 
    Call I2cOutByte(I2cAddr)                  ' send device address with read set 
    I2cAck = False                            ' setup to send Nak 
    I2cByteRead = I2cInByte()                 ' get data byte with Nak 
    Call I2cStop() 
End Function 

Function I2CWordRead(ByVal I2cAddr As Byte, ByVal I2cReg As Byte) As UnsignedInteger 
    Set I2CWordRead = New UnsignedInteger 
    Call I2cStart() 
    Call I2cOutByte(I2cAddr)                  ' send device address 
    Call I2cOutByte(I2cReg)                   ' send register address 
    Call I2cStart()                          ' repeated start



Mechatronic Systems  MechBot Sensor Overview, Page 12 of 16 

    I2cAddr = I2cAddr+1 
    Call I2cOutByte(I2cAddr)                  ' send device address with read set 
    I2cAck = True                             ' setup to send Ack 
    I2cWordRead = CuInt(I2cInByte()*256) 
    I2cAck = False                            ' setup to send Nak 
    I2cWordRead = I2cWordRead + CuInt(I2cInByte()) 
    Call I2cStop() 
End Function 

Sub I2cOutByte(I2cData As Byte) 
    Call ShiftOut(SDA, SCL, 8, I2cData)       ' shift data out 
    Call PutPin(SDA, bxInputTristate)         ' turn SDA around 
    Call PutPin(SCL, bxOutputHigh)            ' and clock in the ack' bit 
    Call PutPin(SCL, bxOutputLow) 
End Sub 

Function I2cInByte() As Byte 
    I2cInByte = ShiftIn(SDA, SCL, 8) 
    If I2cAck=True Then 
        Call PutPin(SDA, bxOutputLow) 
    Else 
        Call PutPin(SDA, bxOutputHigh) 
    End If 
    Call PutPin(SCL, bxOutputHigh)            ' clock out the ack' bit 
    Call PutPin(SCL, bxOutputLow) 
End Function 

Sub I2cStart()                                ' I2C start bit sequence 
    Call PutPin(SDA, bxOutputHigh) 
    Call PutPin(SCL, bxOutputHigh) 
    Call PutPin(SDA, bxOutputLow) 
    Call PutPin(SCL, bxOutputLow) 
End Sub 

Sub I2cStop()                                 ' I2C stop bit sequence 
    Call PutPin(SDA, bxOutputLow) 
    Call PutPin(SCL, bxOutputHigh) 
    Call PutPin(SDA, bxOutputHigh) 
End Sub 

  

 
Displaying Light Sensor and Range readings in a PC Debug window 
Now that you have your SRF08's re-programmed to their new I2C addresses (0xE0 and 0xE2) the 
following sample code will display the light sensor reading and the 1st range reading, for each SRF08 
in the monitor port window on the PC . 
The sample code below can be downloaded here. 

'***********************************************************



Mechatronic Systems  MechBot Sensor Overview, Page 13 of 16 

'**                                                       ** 
'**            I2C Routines for the BX-24                 ** 
'**      to demonstrate the use of multiple SRF08's       ** 
'**                                                       ** 
'**            Copyright 2002 - Devantech Ltd             ** 
'**     Commercial use of this software is prohibited     ** 
'**     Private and educational use only is permitted     ** 
'**                                                       ** 
'**        Written by Gerald Coe - February 2002          ** 
'**                                                       ** 
'***********************************************************  

Const SCL As Byte = 14                  ' I2C clock - choose any pins you wish for SCL and SDA 
Const SDA As Byte = 13                  ' I2C data 

Const CmdReg As Byte = 0                ' SRF08 command register 
Const LdrReg As Byte = 1                ' Address of Light Sensor Register in SRF08 
Const RangeReg As Byte = 2              ' Address of Range Register in SRF08 
Const RangeCmd As Byte = 81             ' Ranging command - 80 for inches, 81 for cm, 82 for uS 

' Note that SRF08's must have been previously set to these addresses 
Const Sonar1 As Byte = &He0             ' 1st SRF08 at I2C address 0Xe0 
Const Sonar2 As Byte = &He2             ' 2nd SRF08 at I2C address 0Xe2 

Dim I2cAck As Boolean                   ' Acknowledge flag 

Sub Main() 
Dim Ldr1 As Byte 
Dim Range1 As New UnsignedInteger 
Dim Ldr2 As Byte 
Dim Range2 As New UnsignedInteger 

    Call PutPin(SCL, bxOutputHigh) 
    Call PutPin(SDA, bxOutputHigh) 

Do 
' 1st SRF08 Ranger 
    Call I2cByteWrite(Sonar1, CmdReg, RangeCmd) ' Start Ranging in Cm 
    Call Delay(0.07)                            ' 70mS wait for ranging to complete 
    Ldr1 = I2cByteRead(Sonar1, LdrReg)          ' Read light sensor 
    Range1 = I2cWordRead(Sonar1, RangeReg)      ' Read Range Register 

' 2nd SRF08 Ranger 
    Call I2cByteWrite(Sonar2, CmdReg, RangeCmd) ' Start Ranging in Cm 
    Call Delay(0.07)                            ' 70mS wait for ranging to complete 
    Ldr2 = I2cByteRead(Sonar2, LdrReg)          ' Read light sensor 
    Range2 = I2cWordRead(Sonar2, RangeReg)      ' Read Range Register 

    debug.Print "LDR1 = "; CStr(Ldr1); ", Range1 = "; CStr(Range1); _ 
               " LDR2 = "; CStr(Ldr2); ", Range2 = "; CStr(Range2) 
Loop 
End Sub 



Mechatronic Systems  MechBot Sensor Overview, Page 14 of 16 

'-------------------------------------------------------------------------------------------- 
' I2C subroutines follow 
'-------------------------------------------------------------------------------------------- 

' writes I2cData to I2cReg at I2cAddr 
    Sub I2cByteWrite(ByVal I2cAddr As Byte, ByVal I2cReg As Byte, ByVal I2cData As Byte) 
    Call I2cStart() 
    Call I2cOutByte(I2cAddr)                   ' send device address 
    Call I2cOutByte(I2cReg)                    ' send register address 
    Call I2cOutByte(I2cData)                   ' send the data 
    Call I2cStop() 
End Sub 

Function I2CByteRead(ByVal I2cAddr As Byte, ByVal I2cReg As Byte) As Byte 
    Call I2cStart() 
    Call I2cOutByte(I2cAddr)                   ' send device address 
    Call I2cOutByte(I2cReg)                    ' send register address 
    Call I2cStart()                            ' repeated start 
    I2cAddr = I2cAddr+1 
    Call I2cOutByte(I2cAddr)                   ' send device address with read set 
    I2cAck = False                             ' setup to send Nak 
    I2cByteRead = I2cInByte()                  ' get data byte with Nak 
    Call I2cStop() 
End Function 

Function I2CWordRead(ByVal I2cAddr As Byte, ByVal I2cReg As Byte) As UnsignedInteger 
    Set I2CWordRead = New UnsignedInteger 
    Call I2cStart() 
    Call I2cOutByte(I2cAddr)                   ' send device address 
    Call I2cOutByte(I2cReg)                    ' send register address 
    Call I2cStart()                            ' repeated start 
    I2cAddr = I2cAddr+1 
    Call I2cOutByte(I2cAddr)                   ' send device address with read set 
    I2cAck = True                              ' setup to send Ack 
    I2cWordRead = CuInt(I2cInByte()*256) 
    I2cAck = False                             ' setup to send Nak 
    I2cWordRead = I2cWordRead + CuInt(I2cInByte()) 
    Call I2cStop() 
End Function 

Sub I2cOutByte(I2cData As Byte) 
    Call ShiftOut(SDA, SCL, 8, I2cData)        ' shift data out 
    Call PutPin(SDA, bxInputTristate)          ' turn SDA around 
    Call PutPin(SCL, bxOutputHigh)             ' and clock in the ack' bit 
    Call PutPin(SCL, bxOutputLow) 
End Sub 

Function I2cInByte() As Byte 
    I2cInByte = ShiftIn(SDA, SCL, 8) 



Mechatronic Systems  MechBot Sensor Overview, Page 15 of 16 

    If I2cAck=True Then 
        Call PutPin(SDA, bxOutputLow) 
    Else 
        Call PutPin(SDA, bxOutputHigh) 
    End If 
    Call PutPin(SCL, bxOutputHigh)             ' clock out the ack' bit 
    Call PutPin(SCL, bxOutputLow) 
End Function 

Sub I2cStart()                                 ' I2C start bit sequence 
    Call PutPin(SDA, bxOutputHigh) 
    Call PutPin(SCL, bxOutputHigh) 
    Call PutPin(SDA, bxOutputLow) 
    Call PutPin(SCL, bxOutputLow) 
End Sub 

Sub I2cStop()                                  ' I2C stop bit sequence 
    Call PutPin(SDA, bxOutputLow) 
    Call PutPin(SCL, bxOutputHigh) 
    Call PutPin(SDA, bxOutputHigh) 
End Sub  

You can find more information on the SRF08 here 

 

 SRF08 Ultra sonic range finder - a little History  
 The SRF08 is an evolutionary step from the SRF04, developed to improve on the following features of the SRF04.  
The key points are;  

1.    The maximum range of 3m can be limiting in some situations.  
2.    The 36mS timeout + 10mS recharge  is rather long – equivalent to almost 8m on a 3m product. 
3.   The SRF04 requires 2 I/O pins per sonar. 32 I/O lines for a 16 sonar system.  
4.    The users host processor is required to time the returning echo 
5.    The 50mA maximum current is too high – 800mA for 16 sonar’s. 
6.    Only a single returning echo is possible. 
7.    The SRF04 can’t see the light (read on) 

The 3m limit of the SRF04 is imposed by the need not to have a gain so high that the cross coupling 
between transmit an receive transducers causes the op-amps saturate at close range. If they did then the 
system could not tell the difference between the cross coupling and a legitimate returning echo. The 
SRF08 uses a digital pot to vary the gain as the range increases. This allows a higher overall gain to be 
set and consequently better range. The Typical range we are seeing on the prototype is 6m and we have 
had it up to 11m for a large object. This is too sensitive because it detects small close by anomalies in 
the floor that the robot really ought to ignore. The gain was therefore deliberately reduced to around 
6m. 

The 36mS timeout of the SRF04 was imposed because the PIC12C508 processor used only has a 
single timer, and this is used for tone detection of the returning echo. The watchdog timer is used to 
time out the ranging. This could only be set in increments of 18mS. Whilst 18mS is just enough – 



Mechatronic Systems  MechBot Sensor Overview, Page 16 of 16 

about 3m range – it is a “typical” value only and not guaranteed, so the real range could be less 
depending on ambient temperature and chip tolerances. A further 10mS is specified in order to 
recharge the +/- 10v supplies for the op-amp and comparator. The max232 IC is switched off during 
echo timing to reduce noise in the op-amps. With the SRF08 the analog circuit has been changed to a 
single 5v supply, so the max232 (actually an ST232) does not need to charge up a 22uF capacitor, only 
the 100n’s. Recharge time now drops to just 600uS and is taken care of by the processor automatically 
when a new reading is requested. A change of processor from the PIC12C508 to the PIC16F872 means 
more timers are available and the SRF08 is not stuck with the 36mS watchdog timer. However one of 
the problems with terminating the ranging early is that the in-flight “ping” does not know this. It quite 
happily bounces off a far wall and returns. Now if it happens to return just after you have started a new 
ranging, the sonar will pick up this earlier “ping” and think there is an object much closer than there 
really is. The SRF08 allows the maximum gain to be limited to reduce this possibility.  

The number of I/O lines required by multiple sonar’s has been an issue with some users. There is also 
a problem which has been identified with the basic stamp, which does not treat all I/O lines equally 
when timing. When using 16 sonar’s, 32 I/O lines are required. This can be reduced to 17 by gating the 
16 echo pulse outputs together with 16 diodes. A further reduction to 6 I/O lines can be achieved by 
using a 4 to 16 line decoder such as the CD4514B. This involves the user building additional circuitry. 
The SRF08 uses the I2C interface so all 16 sonar’s can be controlled using just 2 I/O lines. The I2C 
bus interface is available on popular controllers such as the OOPic, and of course cheap processors 
such as many of the PIC family. 

On the SRF04, the users host processor is required to time the returning echo. This has been an issue 
when using the Stamp, as it  does not treat all I/O lines equally. This is an internal problem with the 
Stamp and was discovered by Jim Fry of Lynxmotion.  The SRF08 does its own internal timing and 
sends you the result. 

The 50mA max. current required by the SRF04, whilst already far better than the 150mA (2.5A peak) 
of the Polaroid units, has been further reduced to 15mA nominal and around 3mA in standby. The 
SRF08 automatically goes into standby when it has completed each ranging, and powers up again 
when it receives the next command. 

Because of the way the SRF04 works, only a single echo can be received. After this the module 
powers up its +/- 10v generators again ready for the next trigger pulse. With the SRF08 multiple 
echo’s can be received. A buffer stores the first 16 echo’s received. The idea is to be able so see 
through  open doorways where a standard sonar would just see the door frame. 

Finally, to make the SRF08 even more useful, I included a light sensor. This is readable over the I2C 
bus just as the sonar data is.  

 


