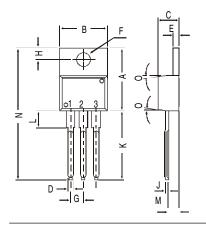


Continental Device India Limited

TO-220 Plastic Package

2N6486, 2N6487, 2N6488 2N6489, 2N6490, 2N6491


2N6486, 6487, 6488 NPN PLASTIC POWER TRANSISTORS 2N6489, 6490, 6491 PNP PLASTIC POWER TRANSISTORS

General Purpose Amplifier and Switching Applications

6486 6487 6488

6486 6487 6488

diminsions in mm.	DIM	MIN.	MAX.	
	Α	14.42	16.51	
	В	9.63	10.67	
	С	3.56	4.83	
	D		0.90	
	Е	1.15	1.40	
	F	3.75	3.88	
	G	2.29	2.79	
	Н	2.54	3.43	
	J		0.56	
	K	12.70	14.73	
	L	2.80	4.07	
	М	2.03	2.92	
	N		31.24	
₹	0	DEG 7		

ABSOLUTE MAXIMUM RATINGS

			6489	6490	6491		
Collector-base voltage (open emitter)	V_{CBO}	max.	50	70	90	V	
Collector-emitter voltage (open base)	V_{CEO}	max.	40	60	80	V	
Collector current	I_C	max.		15		A	
Total power dissipation up to $T_C = 25^{\circ}C$	P_{tot}	max.		75		W	
Junction temperature	T_i	max.		150		$^{\circ}\!C$	
Collector-emitter saturation voltage	,						
$I_C = 5 A$; $I_B = 0.5 A$	V_{CEsat}	max.		1.3		V	
D.C. current gain							
$I_C = 5 A$; $V_{CE} = 4 V$	h_{FE}	min.		20			
		max.		150			

RATINGS (at $T_A=25^{\circ}$ C unless otherwise specified) Limiting values

_			6489	6490	6491	
Collector-base voltage (open emitter)	V_{CBO}	max.	50	70	90	V
Collector-emitter voltage (open base)	V_{CEO}	max.	40	60	80	V
Emitter-base voltage (open collector)	V_{EBO}	max.		5.0		V

2N6486, 2N6487, 2N6488 2N6489, 2N6490, 2N6491

Collector current Base current Total power dissipation up to $T_C = 25^{\circ}C$ Derate above $25^{\circ}C$ Total power dissipation up to $T_A = 25^{\circ}C$ Derate above $25^{\circ}C$ Junction temperature Storage temperature	I_{C} I_{B} P_{tot} P_{tot} T_{j} T_{stg}	max.	15 5.0 75 0.6 1.8 0.014 150 5 to +150	$\begin{matrix} A \\ A \\ W \\ W & \\ \\ W & \\ \\ W & \\ \\ & \\ \\ & \\ \\ & \\ \\ & \\ &$
THERMAL RESISTANCE From junction to ambient From junction to case	R _{th} j–a R _{th} j–c		70 1.67	°C/W °C/W
CHARACTERISTICS $T_{amb} = 25^{\circ}\text{C}$ unless otherwise specified			6487 6488 6490 6493	
Collector cutoff current $I_B = 0$; $V_{CE} = 20 \ V$ $I_B = 0$; $V_{CE} = 30 \ V$ $I_B = 0$; $V_{CE} = 40 \ V$ $V_{EB(off)} = 1.5 \ V$; $V_{CE} = 45 \ V$ $V_{EB(off)} = 1.5 \ V$; $V_{CE} = 65 \ V$ $V_{EB(off)} = 1.5 \ V$; $V_{CE} = 85 \ V$ $V_{EB(off)} = 1.5 \ V$; $V_{CE} = 40 \ V$; $T_{C} = 150^{\circ} C$ $V_{EB(off)} = 1.5 \ V$; $V_{CE} = 60 \ V$; $T_{C} = 150^{\circ} C$ $V_{EB(off)} = 1.5 \ V$; $V_{CE} = 80 \ V$; $T_{C} = 150^{\circ} C$ $V_{EB(off)} = 1.5 \ V$; $V_{CE} = 80 \ V$; $V_{C} = 150^{\circ} C$ $V_{EB(off)} = 1.5 \ V$; $V_{CE} = 80 \ V$; $V_{C} = 150^{\circ} C$ $V_{EB(off)} = 1.5 \ V$; $V_{CE} = 80 \ V$; $V_{C} = 150^{\circ} C$ $V_{EB(off)} = 1.5 \ V$; $V_{CE} = 80 \ V$; $V_{C} = 150^{\circ} C$ $V_{EB(off)} = 1.5 \ V$; $V_{CE} = 80 \ V$; $V_{C} = 150^{\circ} C$ $V_{EB(off)} = 1.5 \ V$; $V_{CE} = 80 \ V$; $V_{C} = 150^{\circ} C$ $V_{EB(off)} = 1.5 \ V$; $V_{CE} = 80 \ V$; $V_{C} = 150^{\circ} C$ $V_{EB(off)} = 1.5 \ V$; $V_{CE} = 80 \ V$; $V_{C} = 150^{\circ} C$ $V_{EB(off)} = 1.5 \ V$; $V_{CE} = 80 \ V$; $V_{C} = 150^{\circ} C$ $V_{EB(off)} = 1.5 \ V$; $V_{CE} = 80 \ V$; $V_{C} = 150^{\circ} C$ $V_{EB(off)} = 1.5 \ V$; $V_{CE} = 80 \ V$; $V_{C} = 150^{\circ} C$ $V_{CE} = 80 \ V$; $V_{C} = 150^{\circ} C$ $V_{CE} = 80 \ V$; $V_{C} = 150^{\circ} C$ $V_{CE} = 80 \ V$; $V_{C} = 150^{\circ} C$ $V_{CE} = 80 \ V$; $V_{C} = 150^{\circ} C$ $V_{CE} = 80 \ V$; $V_{C} = 150^{\circ} C$ $V_{CE} = 100^{\circ} C$ V_{C	ICEX ICEX ILEBO VCEO(sus)* VCBO VCEX(sus)* VEBO	max. 1.0 max max max. 500 max max. 5.0 max max max max. min. 40 min. 50 min. 50 min.	1.0 - 1.0 - 500 - 5.0 - 5.0 - 5.0 1.0 60 80 70 90 5.0 1.3	m A m A m A μ A μ A m A m A m A V V V
$I_{C} = 5 \ A; \ I_{B} = 0.5 \ A$ $I_{C} = 15 \ A; \ I_{B} = 5 \ A$ Base-emitter on voltage $I_{C} = 5 \ A; \ V_{CE} = 4 \ V$ $I_{C} = 15 \ A; \ V_{CE} = 4 \ V$	$VCEsat^*$ $VCEsat^*$ $VBE(on)^*$ $VBE(on)^*$	max. max. max.	1.3 3.5 1.3 3.5	V V V
D.C. current gain $I_C = 5 A; V_{CE} = 4 V$	h_{FE}^*	min. max.	20 150	·
$I_C = 15 A$; $V_{CE} = 4 V$ Transition frequency $I_C = 1 A$; $V_{CE} = 4 V$; $f = 1 MHz$ Small signal current gain $I_C = 1.0A$; $V_{CE} = 4V$; $f = 1.0 KHz$	h_{FE}^* $f_{T(1)}$ h_{fe}	min. min. min.	5.0 5.0 25	MHz
* Pulse test: pulse width $\leq 300 \ \mu s$; duty cycl (1) $f_T = h_{fe} \bullet f_{test}$				

Notes

Disclaimer

The product information and the selection guides facilitate selection of the CDIL's Discrete Semiconductor Device(s) best suited for application in your product(s) as per your requirement. It is recommended that you completely review our Data Sheet(s) so as to confirm that the Device(s) meet functionality parameters for your application. The information furnished on the CDIL Web Site/CD is believed to be accurate and reliable. CDIL however, does not assume responsibility for inaccuracies or incomplete information. Furthermore, CDIL does not assume liability whatsoever, arising out of the application or use of any CDIL product; neither does it convey any license under its patent rights nor rights of others. These products are not designed for use in life saving/support appliances or systems. CDIL customers selling these products (either as individual Discrete Semiconductor Devices or incorporated in their end products), in any life saving/support appliances or systems or applications do so at their own risk and CDIL will not be responsible for any damages resulting from such sale(s).

CDIL strives for continuous improvement and reserves the right to change the specifications of its products without prior notice.

CDIL is a registered Trademark of Continental Device India Limited

C-120 Naraina Industrial Area, New Delhi 110 028, India.

Telephone + 91-11-2579 6150, 5141 1112 Fax + 91-11-579 5290, 5141 1119 email@cdil.com www.cdilsemi.com