INTEGRATED CIRCUITS # DATA SHEET # TDA4662 Baseband delay line Product specification Supersedes data of 1995 Oct 30 File under Integrated Circuits, IC02 1996 Nov 14 # **TDA4662** #### **FEATURES** - Two comb filters, using the switched-capacitor technique, for one line delay time (64 μs) - For PAL and NTSC - · Adjustment-free application - Handles negative or positive colour-difference input signals - Clamping of AC-coupled input signals [\pm (R–Y) and \pm (B–Y)] - VCO without external components - 3 MHz internal clock signal derived from a 6 MHz CCO, line-locked by the sandcastle pulse (64 μs line) - Sample-and-hold circuits and low-pass filters to suppress the 3 MHz clock signal - Addition of delayed and non-delayed output signals - · Output buffer amplifiers - Comb filtering functions for NTSC colour-difference signals to suppress cross-colour. ### **GENERAL DESCRIPTION** The TDA4662 is an integrated baseband delay line circuit with one line delay. It is suitable for PAL and NTSC decoders with colour-difference signal outputs \pm (R–Y) and \pm (B–Y). ### **QUICK REFERENCE DATA** | SYMBOL | PARAMETER | | TYP. | MAX. | UNIT | |---------------------|---|-----|------|------|----------| | V _{P1} | analog supply voltage (pin 9) | 4.5 | 5 | 6 | V | | V_{P2} | digital supply voltage (pin 1) | 4.5 | 5 | 6 | V | | I _{P(tot)} | total supply current | _ | 5.5 | 7.0 | mA | | $V_{i(p-p)}$ | ±(R-Y) input signal PAL/NTSC (peak-to-peak value; pin 16) | | 525 | _ | mV | | | ±(B-Y) input signal PAL/NTSC (peak-to-peak value; pin 14) | | 665 | _ | mV | | G _v | voltage gain V _O /V _I of colour-difference output signals | | | | | | | V ₁₁ /V ₁₆ for PAL and NTSC | | 5.8 | 6.3 | dB | | | V ₁₂ /V ₁₄ for PAL and NTSC | 5.3 | 5.8 | 6.3 | dB | # **ORDERING INFORMATION** | TYPE | PACKAGE | | | | | | |----------|---------|--|----------|--|--|--| | NUMBER | NAME | DESCRIPTION | VERSION | | | | | TDA4662 | DIP16 | plastic dual in-line package; 16 leads (300 mil) | SOT38-4 | | | | | TDA4662T | SO16 | plastic small outline package; 16 leads; body width 3.9 mm | SOT109-1 | | | | TDA4662 # **BLOCK DIAGRAM** # Baseband delay line TDA4662 # **PINNING** | SYMBOL | PIN | DESCRIPTION | | | |-----------------|-----|--|--|--| | V _{P2} | 1 | supply voltage for digital part (+5 V) | | | | n.c. | 2 | not connected | | | | GND2 | 3 | ground for digital part (0 V) | | | | i.c. | 4 | internally connected | | | | SAND | 5 | sandcastle pulse input | | | | n.c. | 6 | not connected | | | | i.c. | 7 | internally connected | | | | i.c. | 8 | internally connected | | | | V _{P1} | 9 | supply voltage for analog part (+5 V) | | | | GND1 | 10 | ground for analog part (0 V) | | | | $V_{o(R-Y)}$ | 11 | ±(R–Y) output signal | | | | $V_{o(B-Y)}$ | 12 | ±(B–Y) output signal | | | | n.c. | 13 | not connected | | | | $V_{i(B-Y)}$ | 14 | ±(B-Y) input signal | | | | n.c. | 15 | not connected | | | | $V_{i(R-Y)}$ | 16 | ±(R–Y) input signal | | | ### LIMITING VALUES In accordance with the Absolute Maximum Rating System (IEC 134). Ground pins 3 and 10 connected together. | SYMBOL | PARAMETER | CONDITIONS | MIN. | MAX. | UNIT | |------------------|-------------------------------------|------------|------|----------------------|------| | V _{P1} | supply voltage (pin 9) | | -0.5 | +7 | V | | V _{P2} | supply voltage (pin 1) | | -0.5 | +7 | V | | V ₅ | input voltage on pin 5 | | -0.5 | V _P + 1.0 | V | | V _n | voltage on pins 11, 12, 14 and 16 | | -0.5 | V _P | V | | T _{stg} | tg storage temperature | | -25 | +150 | °C | | T _{amb} | operating ambient temperature | | 0 | 70 | °C | | V _{ESD} | electrostatic handling for all pins | note 1 | _ | ±500 | V | #### Note 1. Equivalent to discharging a 200 pF capacitor through a 0 Ω series resistor. # THERMAL CHARACTERISTICS | SYMBOL | PARAMETER | VALUE | UNIT | |---------------------|---|-------|------| | R _{th j-a} | thermal resistance from junction to ambient in free air | | | | | SOT38-4 | 75 | K/W | | | SOT109-1 | 220 | K/W | # Baseband delay line TDA4662 # **CHARACTERISTICS** V_P = 5 V; input signals as specified in characteristics with 75% colour bars; super-sandcastle frequency of 15.625 kHz; T_{amb} = 25 °C; measurements taken in Fig.3; unless otherwise specified. | SYMBOL | PARAMETER | CONDITIONS | MIN. | TYP. | MAX. | UNIT | |----------------------------------|---|--|-------|------|-------|------| | V _{P1} | analog supply voltage (pin 9) | | 4.5 | 5 | 6 | V | | V _{P2} | digital supply voltage (pin 1) | | 4.5 | 5 | 6 | V | | I _{P1} | analog supply current (pin 9) | | _ | 4.8 | 6.0 | mA | | I _{P2} | digital supply current (pin 1) | | _ | 0.7 | 1.0 | mA | | Colour-dif | ference input signals | | | | | | | V _{i(p-p)} | input signal (peak-to-peak value) | | | | | | | | ±(R-Y) PAL and NTSC (pin 16) | | _ | 525 | _ | mV | | | ±(B–Y) PAL and NTSC (pin 14) | | _ | 665 | _ | mV | | V _{i(max; p-p)} | maximum symmetrical input signal (peak-to-peak value) | | | | | | | | ±(R-Y) for PAL and NTSC | before clipping | 660 | - | _ | mV | | | ±(B-Y) for PAL and NTSC | before clipping | 840 | - | _ | mV | | R _{14,16} | input resistance during clamping | | _ | _ | 40 | kΩ | | C _{14,16} | input capacitance | | _ | _ | 10 | pF | | V _{14,16} | input clamping voltage | proportional to V _P | 1.3 | 1.5 | 1.7 | V | | Colour-dif | ference output signals | | | | • | | | V _{o(p-p)} | output signal (peak-to-peak value) | | | | | | | | ±(R-Y) on pin 11 | | _ | 1.05 | _ | V | | | ±(B–Y) on pin 12 | | _ | 1.33 | _ | V | | V ₁₁ /V ₁₂ | ratio of output amplitudes at equal input signals | V _{i14,16} = 665 mV (p-p) | -0.4 | 0 | +0.4 | dB | | V _{11,12} | DC output voltage | proportional to V _P | 2.5 | 2.9 | 3.3 | V | | R _{11,12} | output resistance | | _ | 330 | 400 | Ω | | G _v | gain for PAL and NTSC | ratio V _o /V _i | 5.3 | 5.8 | 6.3 | dB | | V _{N(rms)} | noise voltage
(RMS value; pins 11 and 12) | V _{i14,16} = 0 V; note 1 | _ | - | 1.2 | mV | | V _{11,12(p-p)} | unwanted signals (line-locked)
(peak-to-peak value) | $V_{i14,16}$ = 0 V; active video; R_S = 300 Ω | | | | | | | meander | | _ | - | 5 | mV | | | spikes | | _ | _ | 10 | mV | | S/N(W) | weighted signal-to-noise ratio (pins 11 and 12) | V _o = 1 V (p-p); note 1 | | 54 | _ | dB | | t _d | time difference between undelayed and delayed output signals (pins 11 and 12) | | 63.94 | 64 | 64.06 | μs | | | delay of undelayed signals | | 40 | 60 | 80 | ns | # Baseband delay line TDA4662 | SYMBOL | PARAMETER | CONDITIONS | MIN. | TYP. | MAX. | UNIT | |--------------------------------|--|------------|----------------------|--------|----------------------|------| | Sandcastle pulse input (pin 5) | | | | | | | | f _{BK} | burst-key frequency/sandcastle frequency | | 14.2 | 15.625 | 17.0 | kHz | | V ₅ | top pulse voltage | note 2 | 4.0 | _ | V _P + 1.0 | ٧ | | V _{slice} | internal slicing level | | V ₅ – 1.0 | _ | V ₅ – 0.5 | ٧ | | I ₅ | input current | | _ | _ | 10 | μΑ | | C ₅ | input capacitance | | _ | _ | 10 | pF | ### Notes - 1. Noise voltage at f = 10 kHz to 1 MHz; R_S < 300 Ω . - 2. The leading edge of the burst-key pulse or H-blanking pulse is used for timing. # **APPLICATION INFORMATION** # Baseband delay line TDA4662 # **PACKAGE OUTLINES** DIP16: plastic dual in-line package; 16 leads (300 mil) SOT38-4 #### Note inches 0.17 0.020 0.13 1. Plastic or metal protrusions of 0.25 mm maximum per side are not included. 0.068 0.051 0.021 0.015 0.049 0.033 0.014 0.009 | OUTLINE | REFERENCES | | | EUROPEAN | IOOUE DATE | | |---------|------------|-------|------|----------|------------|---------------------------------| | VERSION | IEC | JEDEC | EIAJ | | PROJECTION | ISSUE DATE | | SOT38-4 | | | | | | 92-11-17
95-01-14 | 0.77 0.73 0.26 0.10 0.14 0.12 0.30 0.32 0.31 0.39 0.01 0.030 TDA4662 # SO16: plastic small outline package; 16 leads; body width 3.9 mm SOT109-1 #### Note 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included. | OUTLINE | REFERENCES | | | EUROPEAN | ISSUE DATE | | |----------|------------|----------|------|------------|---------------------------------|--| | VERSION | IEC | JEDEC | EIAJ | PROJECTION | ISSUE DATE | | | SOT109-1 | 076E07S | MS-012AC | | | 91-08-13
95-01-23 | | 8 1996 Nov 14 # Baseband delay line TDA4662 #### **SOLDERING** #### Introduction There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used. This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "IC Package Databook" (order code 9398 652 90011). #### DIP #### SOLDERING BY DIPPING OR BY WAVE The maximum permissible temperature of the solder is 260 °C; solder at this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds. The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature (T_{stg max}). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit. ### REPAIRING SOLDERED JOINTS Apply a low voltage soldering iron (less than 24 V) to the lead(s) of the package, below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than 300 $^{\circ}\text{C}$ it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and 400 $^{\circ}\text{C}$, contact may be up to 5 seconds. #### SO ### REFLOW SOLDERING Reflow soldering techniques are suitable for all SO packages. Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement. Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to 250 °C. Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at $45\,^{\circ}\text{C}$. #### WAVE SOLDERING Wave soldering techniques can be used for all SO packages if the following conditions are observed: - A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used. - The longitudinal axis of the package footprint must be parallel to the solder flow. - The package footprint must incorporate solder thieves at the downstream end. During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured. Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than 150 °C within 6 seconds. Typical dwell time is 4 seconds at 250 °C. A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications. ### REPAIRING SOLDERED JOINTS Fix the component by first soldering two diagonally-opposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 $^{\circ}$ C. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 $^{\circ}$ C. # Baseband delay line TDA4662 ### **DEFINITIONS** | Data sheet status | | |---------------------------|---| | Objective specification | This data sheet contains target or goal specifications for product development. | | Preliminary specification | This data sheet contains preliminary data; supplementary data may be published later. | | Product specification | This data sheet contains final product specifications. | | | | ### Limiting values Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability. ### **Application information** Where application information is given, it is advisory and does not form part of the specification. ### LIFE SUPPORT APPLICATIONS These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale. TDA4662 NOTES # Philips Semiconductors – a worldwide company Argentina: see South America Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113, Tel. +61 2 9805 4455, Fax. +61 2 9805 4466 Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 1 60 101, Fax. +43 1 60 101 1210 Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773 Belgium: see The Netherlands Brazil: see South America **Bulgaria:** Philips Bulgaria Ltd., Energoproject, 15th floor, 51 James Bourchier Blvd., 1407 SOFIA, Tel. +359 2 689 211. Fax. +359 2 689 102 Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 800 234 7381 China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG, Tel. +852 2319 7888, Fax. +852 2319 7700 Colombia: see South America Czech Republic: see Austria Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S, Tel. +45 32 88 2636, Fax. +45 31 57 1949 Finland: Sinikalliontie 3, FIN-02630 ESPOO, Tel. +358 9 615800, Fax. +358 9 61580/xxx France: 4 Rue du Port-aux-Vins BP317, 92156 SURESNES Cedex Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427 Germany: Hammerbrookstraße 69, D-20097 HAMBURG, Tel. +49 40 23 53 60, Fax. +49 40 23 536 300 Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS, Tel. +30 1 4894 339/239, Fax. +30 1 4814 240 Hungary: see Austria India: Philips INDIA Ltd, Shivsagar Estate, A Block, Dr. Annie Besant Rd. Worli, MUMBAI 400 018, Tel. +91 22 4938 541, Fax. +91 22 4938 722 Indonesia: see Singapore Ireland: Newstead, Clonskeagh, DUBLIN 14, Tel. +353 1 7640 000, Fax. +353 1 7640 200 Israel: RAPAC Electronics, 7 Kehilat Saloniki St, TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007 Italy: PHILIPS SEMICONDUCTORS. Piazza IV Novembre 3. 20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557 Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108, Tel. +81 3 3740 5130, Fax. +81 3 3740 5077 Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2 709 1412, Fax. +82 2 709 1415 Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3 750 5214, Fax. +60 3 757 4880 Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905, Tel. +9-5 800 234 7381 Middle East: see Italy Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB, Tel. +31 40 27 82785, Fax. +31 40 27 88399 New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. +64 9 849 4160, Fax. +64 9 849 7811 Norway: Box 1, Manglerud 0612, OSLO, Tel. +47 22 74 8000, Fax. +47 22 74 8341 Philippines: Philips Semiconductors Philippines Inc. 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474 Poland: UI. Lukiska 10, PL 04-123 WARSZAWA Tel. +48 22 612 2831, Fax. +48 22 612 2327 Portugal: see Spain Romania: see Italy Russia: Philips Russia, UI. Usatcheva 35A, 119048 MOSCOW, Tel. +7 095 247 9145, Fax. +7 095 247 9144 Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231, Tel. +65 350 2538, Fax. +65 251 6500 Slovakia: see Austria Slovenia: see Italy South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000, Tel. +27 11 470 5911, Fax. +27 11 470 5494 South America: Rua do Rocio 220, 5th floor, Suite 51, 04552-903 São Paulo, SÃO PAULO - SP, Brazil, Tel. +55 11 821 2333, Fax. +55 11 829 1849 Spain: Balmes 22 08007 BARCELONA Tel. +34 3 301 6312. Fax. +34 3 301 4107 Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM, Tel. +46 8 632 2000, Fax. +46 8 632 2745 Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH, Tel. +41 1 488 2686, Fax. +41 1 481 7730 Taiwan: PHILIPS TAIWAN Ltd., 23-30F, 66 Chung Hsiao West Road, Sec. 1, P.O. Box 22978. TAIPEI 100, Tel. +886 2 382 4443, Fax. +886 2 382 4444 Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd. 209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260, Tel. +66 2 745 4090, Fax. +66 2 398 0793 Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL, Tel. +90 212 279 2770, Fax. +90 212 282 6707 Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461 United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421 United States: 811 East Argues Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 800 234 7381 Uruguay: see South America Vietnam: see Singapore Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD, Tel. +381 11 625 344, Fax.+381 11 635 777 For all other countries apply to: Philips Semiconductors, Marketing & Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825 Internet: http://www.semiconductors.philips.com © Philips Electronics N.V. 1996 SCA52 All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights. Printed in The Netherlands 537021/1200/03/pp12 Date of release: 1996 Nov 14 Document order number: 9397 750 01156 Let's make things better. **Philips** Semiconductors