INTEGRATED CIRCUITS

Preliminary specification Supersedes data of June 1991 File under Integrated Circuits, IC01

Sound fader control circuit for car radios

FEATURES

- Stereo/hi-fi processor for car radios performed with volume, balance, bass and treble controls
- Sound fader control (front/rear) down to –30 dB in steps of 2 dB
- Fast muting via bus or via setting the muting pin
- Suitable for external audio equalizers, can be looped-in controlled by the I²C-bus
- Power-on reset on chip sets the device into general mute position
- AC and DC short-circuit protected concerning neighbouring pins
- I²C-bus control for all functions.

QUICK REFERENCE DATA

GENERAL DESCRIPTION

This bipolar IC is an I²C-bus controlled sound/volume controller for car radios, in addition with fader function and the possibility of an external equalizer.

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
V _P	supply voltage	7	8.5	10	V
I _P	supply current	-	26	-	mA
Vi	maximum AF input signal				
	(RMS value)	2	-	-	V
Vo	maximum AF output signal				
	(RMS value)	1.1	-	-	V
ΔG_v	volume control range, separated	-66	-	+20	dB
	fader control range, separated	0	-	-30	dB
	bass control range	-12	-	+15	dB
	treble control range	-12	-	+12	dB
THD	total harmonic distortion	-	-	0.2	%
S/N(W)	weighted signal-to-noise ratio	-	67	-	dB
α _{CR}	crosstalk attenuation	-	90	-	dB
В	frequency response (-1 dB)		35 to		
		-	20000	_	Hz

ORDERING INFORMATION

EXTENDED		PACKAGE		
TYPE NUMBER	PINS	PIN POSITION	MATERIAL	CODE
TEA6330T ⁽¹⁾	20	SO	plastic	SOT163A

Note

1. Plastic small outline package; 20 leads; body width 7.5 mm; (SOT163A); SOT163-1; 1996 August 02.

Sound fader control circuit for car radios

MUTE 1114 33 nF //// ╢ 5.6 nF GND2 C_{BL1} CBL2 CTL 10 17 16 15 9 2 SDA 1²C-BUS CONTROL 13 QLF SCL የ 4.7 ul V_{ref} 0.33 µF 19 QLR IN-L ----4.7 µF V_{ref} **TEA6330T** VIAF fader muting QRF 0.33 µF VOLUME BASS CONTROL 4.7 µF 18 ٧P POWER 4.7 µF → v_{ref} 20 V_{ref} C_{PS} GND1 C_{BR1} CTR C_{BR2} 22 µF ⊒ີ້ 100 ມF ╢ 5.6 nF MEH238 33 nF 7777 777 777 Fig.1 Block and test circuit.

PINNING

SYMBOL	PIN	DESCRIPTION						
C _{PS}	1	filtering capacitor for power supply						
IN-R	2	audio input signal RIGHT						
GND1	3	analog ground (0 V)						
C _{BR1}	4	capacitor for bass control RIGHT and signal to equalizer						
C _{BR2}	5	capacitor for bass control RIGHT						
C _{TR}	6	capacitor for treble control RIGHT, input signal for equalizer RIGHT						
QRR	7	right audio output signal of rear channel						
QRF	8	right audio output signal of front channel						
MUTE	9	input to set mute externally						
GND2	10	digital ground (0 V) for bus control						
SCL	11	clock signal of I ² C-bus						
SDA	12	data signal of I ² C-bus						
QLF	13	left audio output signal of front channel						
QLR	14	left audio output signal of rear channel						
C _{TL}	15	capacitor for treble control LEFT, input signal for equalizer LEFT						
C _{BL2}	16	capacitor for bass control LEFT						
C _{BL1}	17	capacitor for bass control LEFT and signal to equalizer						
V _P	18	+8.5 V supply voltage						
IN-L	19	audio input signal LEFT						
V _{ref}	20	reference voltage output (V _P /2)						

TEA6330T

FUNCTIONAL DESCRIPTION

This bipolar IC is an l^2 C-bus controlled sound/volume controller for car radios including fader function and the possibility of an external equalizer. The sound signal setting is performed by resistor chains in combination with multi-input operational amplifiers. The advantages of this principle are the combination of low noise, low distortion and a high dynamic range. The separated volume controls of the left and the right channel make the balance control possible. The value and the characteristic of the balance is controlled via the l^2 C-bus.

The contour function is performed by setting an extra bass control and optional treble, depending on the actual volume position. Its switching points and its range are also controllable via the l^2 C-bus.

An interface is assigned behind the volume control to loop-in an equalizer (Fig.2). In this case the treble control is switched off, and the bass control can be used to set the contour. Low level control fader is included independent of the volume controls, because the TEA6330T has four driver outputs (for front and rear).

An extra mute position for the front, the rear or for all channels is built in. The last function may be used for muting during preset selection. No external interface is required between the microcomputer and this circuit, for all switching and controlling functions are controllable via the two-wire l^2C -bus.

The separate mute-pin allows to switch the fader into mute position without using the l^2 C-bus.

The on chip power-on reset sets the TEA6330T into the general mute mode.

LIMITING VALUES

In accordance with the Absolute Maximum System (IEC 134). Ground pins 3 and 10 connected together.

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V _P	supply voltage (pin 18)	0	10	V
P _{tot}	total power dissipation	0	700	mW
T _{stg}	storage temperature range	-55	150	°C
T _{amb}	operating ambient temperature range	-40	85	°C
V _{ESD}	electrostatic handling* for all pins	-	±300	V
	electrostatic handling** for all pins	-	±4000	V

* Equivalent to discharging a 200 pF capacitor through a 0 Ω series resistor.

** Equivalent to discharging a 100 pF capacitor through a 1.5 k Ω series resistor.

TEA6330T

CHARACTERISTICS

 $V_P = 8.5 \text{ V}$; load resistors at audio outputs 10 k Ω , $f_i = 1 \text{ kHz}$ ($R_S = 600 \Omega$), bass and treble in linear position, fader in off position and $T_{amb} = 25 \text{ °C}$; measurements taken in Fig.1 unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _P	supply voltage range (pin 18)		7	8.5	10	V
I _P	supply current		-	26	-	mA
V _{ref}	reference voltage (pin 20)		0.45 V _P	0.5 V _P	0.55 V _P	V
Vo	DC voltage at output (pins 7, 8, 13, 14)		-	0.5 V _P	-	V
Measurem	ents over all					
V _i	maximum AF input level for THD = 2 %	$G_v = -66 \text{ to } -6 \text{ dB}$				
	at pins 2 and 19 (RMS value)	and V _P = 8.1 V	2	-	-	V
Vo	maximum AF output level for THD = 2%	$G_v = -4$ to +20 dB				
	at pins 7, 8, 13, 14 (RMS value)	and V _P = 8.1 V	1.1	-	-	V
G _v	maximum gain by volume setting		19	20	21	dB
В	frequency response	-1 dB roll-off frequency		35 to		
			-	20000	-	Hz
α_{CR}	crosstalk attenuation	f = 250 to 10000 Hz				
		$G_v = 0 dB$	70	90	-	dB
THD	total harmonic distortion	f = 20 to 12500 Hz				
	V _{i (RMS)} = 50 mV	$G_v = +20 \text{ dB}$	-	0.1	0.3	%
	V _{i (RMS)} = 500 mV	$G_v = 0 dB$	-	0.05	0.2	%
	V _{i (RMS)} = 1.6 V	$G_v = -10 \text{ dB}$	-	0.2	0.5	%
RR	ripple rejection for $V_R < 200 \text{ mV RMS}$	$G_v = 0 dB$				
		f = 100 Hz	-	70	-	dB
		f = 40 Hz to 3 kHz	-	60	-	dB
		f = 3 to 12.5 kHz	-	50	-	dB
P _N	noise power at output of a 25 W	mute position				
	powerstage with 26 dB gain	$(V_9 = 0)$			10	
	(Only contribution of TEA63301)		-	-	10	nvv
α _{BUS}	and signal output	$G_{\rm u} = 0 \mathrm{dB}$	_	110	_	dB
	(20 log V _{BUS} (p-p)/V _o RMS)					
S/N(W)	weighted signal-to-noise ratio for	CCIR 468-2 quasi				
		peak for 6 W power amplifier				
	$V_i = 50 \text{ mV RMS}$	$P_0 = 50 \text{ mW}$	_	65	_	dB
	V _i = 500 mV RMS	$P_0 = 50 \text{ mW}$	_	67	_	dB
	$V_i = 50 \text{ mV RMS}$	$P_0 = 1 W$	65	72	_	dB
	V _i = 500 mV RMS	$P_0 = 1 W$	71	78	_	dB
	V _i = 50 mV RMS	$P_0 = 6 W; Fig.9$	_	72	_	dB
	V _i = 500 mV RMS	$P_0 = 6 W; Fig.9$	_	86	_	dB

TEA6330T

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Audio free	uency outputs QLF, QRF, QLR and QRF	2		•		
Vo	maximum output signal (RMS value)		1.1	-	-	V
R _o	output resistance (pins 7, 8, 13 and 14)		-	100	150	Ω
RL	admissible output load resistor	to ground or V _{CC}	7.5	-	-	kΩ
CL	admissible output load capacitor		-	-	2.5	nF
V _{N(W)}	weighted noise voltage at output	CCIR 468-2 ; Fig.8				
		quasi peak				
	for maximum gain	$G_v = +20 \text{ dB}$	-	110	220	μV
	for 0 dB gain	$G_v = 0 dB$	-	25	50	μV
	for minimum gain	G _v = -66 dB	-	19	38	μV
	for mute position	$(V_9 = 0)$	-	11	22	μV
Volume co	ontrol	R _G = 600Ω				
RI	input resistance (pins 2 and 19)		35	50	65	kΩ
G _v	volume control range	Table 2	-66	-	+20	dB
ΔG _v	step width		-	2	-	dB
	gain set error	$G_v = -50 \text{ to } +20 \text{ dB}$	-	-	2	dB
		$G_v = -66 \text{ to } -50 \text{ dB}$	-	-	3	dB
	gain tracking error	balance in mid position	-	-	2	dB
α _{mute}	mute attenuation at volume mute	set mute-bits	76	90	-	dB
Bass cont	rol	•		•		
G _v	controllable bass range	Table 3; Fig.6				
	maximum boost	f = 40 Hz	14	15	16	dB
	maximum boost	f = 100 Hz	12	13	14	dB
	maximum attenuation	f = 40 Hz	11	12	13	dB
	maximum attenuation	f = 100 Hz	10	11	12	dB
ΔG_v	step width	f = 40 Hz	2.5	3	3.5	dB
Treble con	itrol					
G _v	controllable treble range	Table 4; Fig.7				
	maximum boost	f = 10 kHz	9	10	11	dB
	maximum boost	f = 15 kHz	11	12	13	dB
	maximum boost	f > 15 kHz	-	-	15	dB
	maximum attenuation	f = 10 kHz	9	10	11	dB
	maximum attenuation	f = 15 kHz	11	12	13	dB
ΔG_v	step width	f = 15 kHz	2.5	3	3.5	dB

TEA6330T

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Fader con	trol			•	•	
G _v	fader control range	Table 5		0 to		
			_	-30	_	dB
	step width		1.5	2	2.5	dB
α _{MUTE}	mute attenuation	GMB-bit = 1; Table 6	74	84	-	dB
ΔV _o	DC offset output voltage (pins 7, 8, 13, 14)					
	between any adjoining volume step					
	and any step to mute	$G_v = -66 \text{ to } 0 \text{ dB}$	-	0.2	10	mV
		$G_v = 0$ to +20 dB	-	2	15	mV
	in any treble and fader position	$G_v = -66 \text{ to } 0 \text{ dB}$	-	-	10	mV
	in any bass position	$G_v = -66 \text{ to } 0 \text{ dB}$	-	-	10	mV
External m	nute (pin 9)					
V ₉	input voltage for MUTE-ON (LOW)	fader is switched into				
		general mute position	0	-	1.5	V
	input voltage for MUTE-OFF (HIGH)	Tables 2 and 5	3	-	V _P	V
	input voltage for MUTE-OFF	pin 9 open-circuit	-	5	-	V
l ₉	input current		-	-	±10	μA
l ² C-bus, S	CL and SDA (pins 11 and 12)					
V _{11, 12}	input voltage HIGH-level		3	-	V _P	V
	input voltage LOW-level		0	-	1.5	V
I _{11, 12}	input current		-	-	±10	μΑ
V _{ACK}	output voltage at acknowledge (pin 12)	$I_{12} = -3 \text{ mA}$	-	-	0.4	V
Power-on	reset, when reset is active the GMU-bit (g	eneral mute) is set and the	e bus rece	iver is in re	eset positio	'n
V _P	supply voltage for start of reset	increasing voltage	-	-	2.5	V
	supply voltage for end of reset	increasing voltage	5.2	6.0	6.8	V
	supply voltage for start of reset	decreasing voltage	4.2	5.0	5.8	V

January 1992

TEA6330T

Sound fader control circuit for car radios

Sound fader control circuit for car radios

TEA6330T

I²C-BUS PROTOCOL

I²C-bus format

S SLAVE ADDRESS A SUBADDRESS A DATA P	S
---------------------------------------	---

S	=	start condition
SLAVE ADDRESS	=	1000 000X
A	=	acknowledge, generated by the slave
SUBADDRESS	=	subaddress byte, Table 1
DATA	=	data byte, Table 1
Р	=	stop condition
Х	=	read/write control bit X = 0, order to write (the circuit is slave receiver only)

If more than 1 byte DATA are transmitted, then auto-increment of the subaddress is performed.

Byte organisation

Table 1 I²C-bus transmission

EUNCTION									DATA BYTE							
FUNCTION	SUBADDRESS BITE						D7	D6	D5	D4	D3	D2	D1	D0		
volume left	0	0	0	0	0	0	0	0	0	0	VL5	VL4	VL3	VL2	VL1	VL0
volume right	0	0	0	0	0	0	0	1	0	0	VR5	VR4	VR3	VR2	VR1	VR0
bass	0	0	0	0	0	0	1	0	0	0	0	0	BA3	BA2	BA1	BA0
treble	0	0	0	0	0	0	1	1	0	0	0	0	TR3	TR2	TR1	TR0
fader	0	0	0	0	0	1	0	0	0	0	MFN	FCH	FA3	FA2	FA1	FA0
audio switch	0	0	0	0	0	1	0	1	GMU	EQN	0	0	0	0	0	0

Function of the bits:

VL0	to	VL5	volume control of left channel (balance control)
VR0	to	VR5	volume control of right channel (balance control)
BA0	to	BA3	bass control of both channels
TRO	to	TR3	treble control of both channels
FA0	to	FA3	fader control front to rear
FCH			select fader channels front or rear
MFN			mute control of the selected channels front or rear
GMU			mute control, general mute
EQN			equalizer switchover (0 = equalizer-on)

Sound fader control circuit for car radios

Table 2(a) Volume setting LEFT

Gv			DA	TA			Gv	DATA					
DB	VL5	VL4	VL3	VL2	VL1	VL0	DB	VL5	VL4	VL3	VL2	VL1	VL0
+20	1	1	1	1	1	1	-32	1	0	0	1	0	1
+18	1	1	1	1	1	0	-34	1	0	0	1	0	0
+16	1	1	1	1	0	1	-36	1	0	0	0	1	1
+14	1	1	1	1	0	0	-38	1	0	0	0	1	0
+12	1	1	1	0	1	1	-40	1	0	0	0	0	1
+10	1	1	1	0	1	0	-42	1	0	0	0	0	0
+8	1	1	1	0	0	1	-44	0	1	1	1	1	1
+6	1	1	1	0	0	0	-46	0	1	1	1	1	0
+4	1	1	0	1	1	1	-48	0	1	1	1	0	1
+2	1	1	0	1	1	0	-50	0	1	1	1	0	0
							-52	0	1	1	0	1	1
0	1	1	0	1	0	1	-54	0	1	1	0	1	0
							-56	0	1	1	0	0	1
-2	1	1	0	1	0	0	-58	0	1	1	0	0	0
-4	1	1	0	0	1	1	-60	0	1	0	1	1	1
-6	1	1	0	0	1	0	-62	0	1	0	1	1	0
-8	1	1	0	0	0	1	-64	0	1	0	1	0	1
-10	1	1	0	0	0	0	-66	0	1	0	1	0	0
-12	1	0	1	1	1	1							
-14	1	0	1	1	1	0							
-16	1	0	1	1	0	1	mute	0	1	0	0	1	1
-18	1	0	1	1	0	0	mute	0	1	0	٥	1	0
-20	1	0	1	0	1	1	left		I	0	0	I	0
-22	1	0	1	0	1	0							
-24	1	0	1	0	0	1							
-26	1	0	1	0	0	0							
-28	1	0	0	1	1	1	mute	0	0	0	0	0	0
-30	1	0	0	1	1	0	left						

Sound fader control circuit for car radios

Table 2(b) Volume setting RIGHT

Gv			DA	TA			Gv			DA	TA		
DB	VR5	VR4	VR3	VR2	VR1	VL0	DB	VR5	VR4	VR3	VR2	VR1	VL0
+20	1	1	1	1	1	1	-32	1	0	0	1	0	1
+18	1	1	1	1	1	0	-34	1	0	0	1	0	0
+16	1	1	1	1	0	1	-36	1	0	0	0	1	1
+14	1	1	1	1	0	0	-38	1	0	0	0	1	0
+12	1	1	1	0	1	1	-40	1	0	0	0	0	1
+10	1	1	1	0	1	0	-42	1	0	0	0	0	0
+8	1	1	1	0	0	1	-44	0	1	1	1	1	1
+6	1	1	1	0	0	0	-46	0	1	1	1	1	0
+4	1	1	0	1	1	1	-48	0	1	1	1	0	1
+2	1	1	0	1	1	0	-50	0	1	1	1	0	0
							-52	0	1	1	0	1	1
0	1	1	0	1	0	1	-54	0	1	1	0	1	0
							-56	0	1	1	0	0	1
-2	1	1	0	1	0	0	-58	0	1	1	0	0	0
-4	1	1	0	0	1	1	-60	0	1	0	1	1	1
-6	1	1	0	0	1	0	-62	0	1	0	1	1	0
-8	1	1	0	0	0	1	-64	0	1	0	1	0	1
-10	1	1	0	0	0	0	-66	0	1	0	1	0	0
-12	1	0	1	1	1	1							
-14	1	0	1	1	1	0		0	4	0	0		4
-16	1	0	1	1	0	1	right	0	1	0	0	.I	.1
-18	1	0	1	1	0	0	mute	0	1	0	0	1	0
-20	1	0	1	0	1	1	right	Ū		U	Ū		Ŭ
-22	1	0	1	0	1	0							
-24	1	0	1	0	0	1							
-26	1	0	1	0	0	0							
-28	1	0	0	1	1	1	mute	0	0	0	0	0	0
-30	1	0	0	1	1	0	right						

Table 3(a)

Bass setting with	equalizer	passive	(EQN =1)
-------------------	-----------	---------	----------

Gv	DATA					
DB	D3	D2	D1	D0		
+15	1	1	1	1		
+15	1	1	1	0		
+15	1	1	0	1		
+15	1	1	0	0		
+12	1	0	1	1		
+9	1	0	1	0		
+6	1	0	0	1		
+3	1	0	0	0		
0	0	1	1	1		
-3	0	1	1	0		
-6	0	1	0	1		
-9	0	1	0	0		
-12	0	0	1	1		
-12	0	0	1	0		
-12	0	0	0	0		

able 3(b) ass setting with equalizer active (EQN = 0)						
Gv		DA	ТА			
DB	D3	D2	D1	D0		
+15	1	1	1	1		
+15	1	1	1	0		
+15	1	1	0	1		
+15	1	1	0	0		
+12	1	0	1	1		
+9	1	0	1	0		
+6	1	0	0	1		
+3	1	0	0	0		
0	0	1	1	1		
0	0	1	1	0		
0	0	1	0	1		
0	0	1	0	0		

Table 4(a)	
Treble setting with equalizer	passive (EQN = 1)

Gv		DATA					
DB	D3	D2	D1	D0			
+12	1	1	1	1			
+12	1	1	1	0			
+12	1	1	0	1			
+12	1	1	0	0			
+12	1	0	1	1			
+9	1	0	1	0			
+6	1	0	0	1			
+3	1	0	0	0			
0	0	1	1	1			
-3	0	1	1	0			
-6	0	1	0	1			
-9	0	1	0	0			
-12	0	0	1	1			
-12	0	0	1	0			
-12	0	0	0	0			

January 1992

Table 4(b) Treble setting with equalizer active (EQN = 0)

0

0

0

1

1

0

1

0

0

0

0

0

0

0

0

Gv	DATA					
DB	D3	D2	D1	D0		
0	1	1	1	1		
0	1	1	1	0		
0	1	1	0	1		
0	1	1	0	0		
0	1	0	1	1		
0	1	0	1	0		
0	1	0	0	1		
0	1	0	0	0		
0	0	1	1	1		
0	0	1	1	0		
0	0	1	0	1		
0	0	1	0	0		
0	0	0	1	1		
0	0	0	1	0		
0	0	0	0	0		

TEA6330T

Preliminary specification

TEA6330T

SETT	ING			DA	TA		
FRONT	REAR						
DB	DB	MFN	FCH	FA3	FA2	FA1	FA0
				fade	r-off		
0	0	1	1	1	1	1	1
0	0	0	1	1	1	1	1
				fader	-front		
-2	0	1	1	1	1	1	0
-4	0	1	1	1	1	0	1
-6	0	1	1	1	1	0	0
-8	0	1	1	1	0	1	1
-10	0	1	1	1	0	1	0
-12	0	1	1	1	0	0	1
-14	0	1	1	1	0	0	0
-16	0	1	1	0	1	1	1
–18	0	1	1	0	1	1	0
-20	0	1	1	0	1	0	1
-22	0	1	1	0	1	0	0
-24	0	1	1	0	0	1	1
-26	0	1	1	0	0	1	0
-28	0	1	1	0	0	0	1
-30	0	1	1	0	0	0	0
				mute	front		
-84	0	0	1	1	1	1	0
-84	0	0	1	0	0	0	0

SETTING				DA	ТА		
FRONT	REAR						
DB	DB	MFN	FCH	FA3	FA2	FA1	FA0
				fade	r-off		
0	0	1	0	1	1	1	1
0	0	0	0	1	1	1	1
				fader	rear		
0	-2	1	0	1	1	1	0
0	-4	1	0	1	1	0	1
0	-6	1	0	1	1	0	0
0	-8	1	0	1	0	1	1
0	-10	1	0	1	0	1	0
0	-12	1	0	1	0	0	1
0	-14	1	0	1	0	0	0
0	-16	1	0	0	1	1	1
0	-18	1	0	0	1	1	0
0	-20	1	0	0	1	0	1
0	-22	1	0	0	1	0	0
0	-24	1	0	0	0	1	1
0	-26	1	0	0	0	1	0
0	-28	1	0	0	0	0	1
0	-30	1	0	0	0	0	0
				mute	rear		
0	-84	0	0	1	1	1	0
0	-84	0	0	0	0	0	0

Table 5(b) Fader function rear

Table 6 Mute control

MUTE CONTROL	DATA GMU-BIT	REMARKS
active	1	outputs QLF, QLR, QRF and QRR are muted
passive	0	no general mute

Table 7 Equalizer

EQUALIZER CONTROL	DATA EQN-BIT	REMARKS
active	0	signal outputs for equalizer are pins 4 and 17, inputs are pins 6 and 15; Tables 3(b) and 4(b)
passive	1	no general mute; Tables 3(a) and 4(a)

Sound fader control circuit for car radios

PACKAGE OUTLINE

Preliminary specification

Sound fader control circuit for car radios

TEA6330T

SOLDERING

Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our *"IC Package Databook"* (order code 9398 652 90011).

Reflow soldering

Reflow soldering techniques are suitable for all SO packages.

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to 250 °C.

Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at 45 °C.

Wave soldering

Wave soldering techniques can be used for all SO packages if the following conditions are observed:

- A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
- The longitudinal axis of the package footprint must be parallel to the solder flow.
- The package footprint must incorporate solder thieves at the downstream end.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than 150 °C within 6 seconds. Typical dwell time is 4 seconds at 250 °C.

A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

Repairing soldered joints

Fix the component by first soldering two diagonallyopposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 °C.

TEA6330T

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.	
Application information	

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.