TDA7851A ## 4 x 48 W MOSFET quad bridge power amplifier Datasheet - production data ### **Features** - Multipower BCD technology - High output power capability: - 4 x 48 W/4 Ω Max. - 4 x 28 W/4 Ω @ 14.4 V, 1 kHz, 10 % - 4 x 72 W/2 Ω Max. - MOSFET output power stage - Excellent 2 Ω driving capability - Hi-Fi class distortion - Low output noise - Standby function - Mute function - Automute at min. supply voltage detection - Low external component count: - Internally fixed gain (26 dB) - No external compensation - No bootstrap capacitors - Protections: - Output short circuit to GND, to Vs, across the load - Very inductive loads - Overrating chip temperature with soft thermal limiter - Output DC offset detection - Load dump voltage - Fortuitous open GND - Reversed battery - ESD ## **Description** The TDA7851A is a breakthrough MOSFET technology class AB audio power amplifier, designed for high-power car radio. The fully complementary P-Channel/N-Channel output structure allows a rail-to-rail output voltage swing. This, combined with high output current and minimized saturation losses, sets new power references in the car-radio field, with unparalleled distortion performance. Table 1. Device summary | Order code | Package | Packing | |------------|-----------------------|---------| | TDA7851A | TDA7851A Flexiwatt 27 | | June 2012 Doc ID 17715 Rev 2 1/15 Downloaded from DatasheetLib.com - datasheet search engine Contents TDA7851A ## **Contents** | 1 | Bloc | k diagram and application circuit | |---|-------|-----------------------------------| | | 1.1 | Block diagram | | | 1.2 | Application circuit | | 2 | Pin o | description6 | | | 2.1 | Pin connection | | | 2.2 | Thermal data 6 | | 3 | Elec | trical specifications7 | | | 3.1 | Absolute maximum ratings | | | 3.2 | Electrical characteristics | | | 3.3 | Electrical characteristics curves | | 4 | Арр | lication hints 12 | | | 4.1 | DC offset detector | | | 4.2 | SVR 12 | | | 4.3 | Input stage | | | 4.4 | Standby and muting 12 | | | 4.5 | Heatsink definition | | 5 | Pack | rage information | | 6 | Revi | sion history | Doc ID 17715 Rev 2 577 TDA7851A List of tables # List of tables | | Device summary | |----------|----------------------------| | | Thermal data | | Table 3. | Absolute maximum ratings | | Table 4. | Electrical characteristics | | Table 5. | Document revision history | **577** List of figures TDA7851A # **List of figures** | Figure 1. | Block diagram | 5 | |------------|---|------| | Figure 2. | Application circuit | | | Figure 3. | Pin connection (top view) | | | Figure 4. | Quiescent current vs. supply voltage | | | Figure 5. | Output power vs. supply voltage ($R_L = 4 \Omega$) | 9 | | Figure 6. | Output power vs. supply voltage ($R_L = 2 \Omega$) | 9 | | Figure 7. | Distortion vs. output power ($R_L = 4 \Omega$) | 9 | | Figure 8. | Distortion vs. output power ($R_L = 2 \Omega$) | 9 | | Figure 9. | Distortion vs. frequency ($R_L = 4 \Omega$) | | | Figure 10. | Distortion vs. frequency ($R_L = 2 \Omega$) | | | Figure 11. | Crosstalk vs. frequency | | | Figure 12. | Supply voltage rejection vs. frequency | | | Figure 13. | Output attenuation vs. supply voltage | . 10 | | Figure 14. | Power dissipation and efficiency vs. output power ($R_1 = 4 \Omega$, SINE) | . 10 | | Figure 15. | Power dissipation and efficiency vs. output power ($R_1 = 2 \Omega$, SINE) | . 10 | | Figure 16. | Power dissipation vs. output power ($R_1 = 4 \Omega$, audio program simulation) | . 11 | | Figure 17. | Power dissipation vs. output power ($R_1 = 2 \Omega$, audio program simulation) | . 11 | | Figure 18. | ITU R-ARM frequency response, weighting filter for transient pop | . 11 | | Figure 19. | Flexiwatt27 mechanical data and package dimensions | . 13 | #### Block diagram and application circuit 1 #### 1.1 **Block diagram** Figure 1. **Block diagram** #### 1.2 **Application circuit** Figure 2. **Application circuit** 577 Doc ID 17715 Rev 2 5/15 Pin description TDA7851A ## 2 Pin description ### 2.1 Pin connection Figure 3. Pin connection (top view) ### 2.2 Thermal data Table 2. Thermal data | Symbol | Parameter | Value | Unit | |------------------------|---|-------|------| | R _{th j-case} | Thermal resistance junction-to-case Max | 1 | °C/W | **577** 7/15 ## 3 Electrical specifications ## 3.1 Absolute maximum ratings Table 3. Absolute maximum ratings | Symbol | Parameter | Value | Unit | |---------------------|---|------------|--------| | V _S | Operating supply voltage | 18 | V | | V _{S (DC)} | DC supply voltage | 28 | V | | V _{S (pk)} | Peak supply voltage (for t = 50 ms) | 50 | V | | I _O | Output peak current Non repetitive (t = 100 µs) Repetitive (duty cycle 10 % at f = 10 Hz) | 10
9 | A
A | | P _{tot} | Power dissipation T _{case} = 70 °C | 85 | W | | T _j | Junction temperature | 150 | °C | | T _{stg} | Storage temperature | -55 to 150 | °C | ### 3.2 Electrical characteristics Refer to the test and application diagram, V_S = 14.4 V; R_L = 4 Ω ; R_g = 600 Ω ; f = 1 kHz; T_{amb} = 25 °C; unless otherwise specified. Table 4. Electrical characteristics | Symbol | Parameter | Test condition | Min. | Тур. | Max. | Unit | |---------------------|---|--|------|----------------|------|-------------| | V _S | Supply voltage range | - | 8 | - | 18 | V | | I _{q1} | Quiescent current | $R_L = \infty$ | 100 | 150 | 300 | mA | | V _{OS} | Output offset voltage | Play mode / Mute mode | -60 | - | +60 | mV | | dV | During mute ON/OFF output offset voltage | ITU R-ARM weighted | -10 | - | +10 | mV | | dV _{OS} | During standby ON/OFF output offset voltage | see Figure 18 | -10 | - | +10 | mV | | G _v | Voltage gain | - | 25 | 26 | 27 | dB | | dG _v | Channel gain unbalance | - | - | - | ±1 | dB | | В | Output power | V _S = 14.4 V; THD = 10 %
V _S = 14.4 V; THD = 1 % | 25 | 28
22 | - | W
W | | P _o | Output power | V_S = 14.4 V; THD = 10 %, 2 Ω V_S = 14.4 V; THD = 1 %, 2 Ω | - | 48
38 | - | W
W | | P _{o max.} | Max. output power ⁽¹⁾ | $V_S = 14.4 \text{ V}; R_L = 4 \Omega$
$V_S = 14.4 \text{ V}; R_L = 2 \Omega$
$V_S = 15.2 \text{ V}; R_L = 4 \Omega$ | - | 45
75
48 | - | W
W
W | | THD | Distortion | P _o = 4 W | - | 0.01 | 0.05 | % | Doc ID 17715 Rev 2 Table 4. Electrical characteristics (continued) | $\begin{array}{c} e_{No} & \text{Output noise} & \text{"A" Weighted} \\ \text{Bw} = 20 \ \text{Hz} \ \text{to} \ 20 \ \text{kHz} & \text{-} \\ \text{50} & 100 \\ \hline \\ \text{SVR} & \text{Supply voltage rejection} & \text{f} = 100 \ \text{Hz; V}_r = 1 \ \text{Vrms} & 50 & 70 & \text{-} \\ \text{f}_{ch} & \text{High cut-off frequency} & P_O = 0.5 \ \text{W} & 100 & 300 & \text{-} \\ \text{R}_i & \text{Input impedance} & \text{-} & 70 & 100 & 130 \\ \hline \\ \text{C}_T & \text{Cross talk} & \text{f} = 1 \ \text{kHz, P}_O = 4 \ \text{W} & 60 & 70 & \text{-} \\ \text{f} = 10 \ \text{kHz, P}_O = 4 \ \text{W} & 60 & \text{-} \\ \text{f} = 10 \ \text{kHz, P}_O = 4 \ \text{W} & 60 & \text{-} \\ \hline \\ \text{V}_{St-by} = 1.2 \ \text{V} & \text{-} & \text{-} & 20 \\ \hline \\ \text{V}_{St-by} = 0 & \text{-} & \text{-} & 10 \\ \hline \\ \text{V}_{SB} \ \text{out} & \text{Standby current consumption} & \text{V}_{St-by} = 1.2 \ \text{V to} \ 2.6 \ \text{V} & \text{-} & \text{-} & \pm 1 \\ \hline \\ \text{V}_{SB} \ \text{out} & \text{Standby out threshold voltage} & \text{(Amp: ON)} & 2.6 & \text{-} & \text{-} \\ \hline \\ \text{V}_{SB} \ \text{in} & \text{Standby in threshold voltage} & \text{(Amp: OFF)} & \text{-} & \text{-} & 1.2 \\ \hline \\ \text{V}_{M} \ \text{out} & \text{Mute attenuation} & \text{P}_{Oref} = 4 \ \text{W} & 80 & 90 & \text{-} \\ \hline \\ \text{V}_{M} \ \text{out} & \text{Mute out threshold voltage} & \text{(Amp: Play)} & 2.6 & \text{-} & \text{-} \\ \hline \\ \text{V}_{M} \ \text{in} & \text{V}_{S} \ \text{automute threshold} & \text{(Amp: Mute)} & \text{-} & \text{-} & 1.2 \\ \hline \\ \text{V}_{AM} \ \text{in} & \text{V}_{S} \ \text{automute threshold} & \text{(Amp: Mute)} & \text{-} & \text{-} & 7.5 \ 8} \\ \hline \\ \text{Ipin23} & \text{Muting pin current} & \text{V}_{MUTE} = 1.2 \ \text{V} & \text{(Sourced current)} & \text{-} & \text{-} & 1.8 \\ \hline \\ \text{Offset detector} & \text{Otherwise} \ \text{Otherwise} \ \text{Otherwise} \ \text{In} \ \text{Otherwise} \ \text{-} & \text{-} & \text{-} & 1.8 \\ \hline \\ \text{Offset detector} & \text{Otherwise} \ \text{-} & \text{-} & \text{-} & 1.8 \\ \hline \end{array}$ | μV
μV
dB
kHz
kΩ
dB
dB
μA
μA
V
V | | | | | | | |---|---|--|--|--|--|--|--| | $ \begin{array}{c} f_{ch} & \mbox{High cut-off frequency} & \mbox{$P_O = 0.5 W$} & 100 & 300 & - \\ \hline R_i & \mbox{Input impedance} & - & 70 & 100 & 130 \\ \hline C_T & \mbox{Cross talk} & \mbox{$f = 1 \mbox{ kHz}, P_O = 4 \mbox{ W}} & 60 & 70 & - \\ \hline I_{SB} & \mbox{Standby current consumption} & \mbox{$V_{St-by} = 1.2 \mbox{ V}} & - & - & 20 \\ \hline V_{St-by} = 0 & - & - & 10 \\ \hline I_{pin5} & \mbox{Standby pin current} & \mbox{$V_{St-by} = 1.2 \mbox{ V}} & - & - & \pm 1 \\ \hline V_{SB \mbox{ out}} & \mbox{Standby out threshold voltage} & \mbox{$(Amp:ON)$} & 2.6 & - & - \\ \hline V_{SB \mbox{ in}} & \mbox{Standby in threshold voltage} & \mbox{$(Amp:OFF)$} & - & - & 1.2 \\ \hline A_M & \mbox{Mute attenuation} & \mbox{$P_{Oref} = 4 \mbox{ W}} & 80 & 90 & - \\ \hline V_{M \mbox{ out}} & \mbox{Mute out threshold voltage} & \mbox{$(Amp:Play)$} & 2.6 & - & - \\ \hline V_{M \mbox{ in}} & \mbox{Mute in threshold voltage} & \mbox{$(Amp:Mute)$} & - & - & 1.2 \\ \hline V_{AM \mbox{ in}} & \mbox{V_S automute threshold} & \mbox{$(Amp:Mute)$} & - & - & 1.2 \\ \hline V_{M \mbox{ in}} & \mbox{V_S automute threshold} & \mbox{$V_{M \mbox{ in}} = 1.2 \mbox{ V}} & \mbox{$Att \geq 80 \mbox{ dB; $P_{Oref} = 4 \mbox{ W}} & 6.7 & 7 \\ \hline \mbox{$(Amp:Play)$} & - & 7.5 & 8 \\ \hline \mbox{I_{Din23}} & \mbox{Muting pin current} & \mbox{$V_{M \mbox{ UTE}} = 1.2 \mbox{ V}} & - & - & - & 18 \\ \hline \mbox{$V_{M \mbox{ UTE}} = 2.6 \mbox{ V}} & -5 & -5 & -5 & 18 \\ \hline \mbox{$V_{M \mbox{ UTE}} = 2.6 \mbox{ V}} & -5 & -5 & -5 & 18 \\ \hline \mbox{$V_{M \mbox{ UTE}} = 2.6 \mbox{ V}} & -5 & -5 & -5 & 18 \\ \hline \mbox{$V_{M \mbox{ UTE}} = 2.6 \mbox{ V}} & -5 & -5 & -5 & 18 \\ \hline \mbox{$V_{M \mbox{ UTE}} = 2.6 \mbox{ V}} & -5 & -5 & -5 & -5 & 18 \\ \hline \mbox{$V_{M \mbox{ UTE}} = 2.6 \mbox{ V}} & -5 & -5 & -5 & -5 & -5 \\ \hline \mbox{$V_{M \mbox{ UTE}} = 2.6 \mbox{ V}} & -5 & -5 & -5 & -5 & -5 \\ \hline \mbox{$V_{M \mbox{ UTE}} = 2.6 \mbox{ V}} & -5 & -5 & -5 & -5 & -5 & -5 \\ \hline \mbox{$V_{M \mbox{ UTE}} = 2.6 \mbox{ V}} & -5 & -5 & -5 & -5 & -5 \\ \hline \mbox{$V_{M \mbox{ UTE}} = 2.6 \mbox{$V_{M \mbox{ UTE}} = 2.6 \mbox{$V_{M \mbox{ UTE}} = 2.6 $V_{M \m$ | kHz kΩ dB dB μA μA V V dB V | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | kΩ
dB
dB
μA
μA
V
V
dB
V | | | | | | | | $ \begin{array}{c} C_T & \text{Cross talk} & \begin{array}{c} f = 1 \text{ kHz, } P_O = 4 \text{ W} \\ f = 10 \text{ kHz, } P_O = 4 \text{ W} \end{array} & \begin{array}{c} 60 \\ 60 \end{array} & \begin{array}{c} 70 \\ -60 \end{array} & \\ -20 \end{array} \\ \\ V_{SI-by} = 1.2 \text{ V} & - & - & 20 \end{array} \\ V_{SI-by} = 0 & - & - & 10 \end{array} \\ V_{SI-by} = 0 & - & - & 10 \end{array} \\ V_{SB \text{ out}} & \begin{array}{c} \text{Standby pin current} & V_{SI-by} = 1.2 \text{ V to } 2.6 \text{ V} \\ V_{SB \text{ out}} & \text{Standby out threshold voltage} & \text{(Amp: ON)} & 2.6 \\ - & - & - \\ V_{SB \text{ in}} & \text{Standby in threshold voltage} & \text{(Amp: OFF)} & - & - & 1.2 \end{array} \\ V_{SB \text{ in}} & \begin{array}{c} \text{Standby in threshold voltage} & \text{(Amp: OFF)} & - & - & 1.2 \end{array} \\ V_{M \text{ out}} & \text{Mute attenuation} & P_{Oref} = 4 \text{ W} & 80 & 90 \\ V_{M \text{ out}} & \text{Mute out threshold voltage} & \text{(Amp: Play)} & 2.6 \\ - & - & - \\ V_{M \text{ in}} & \text{Mute in threshold voltage} & \text{(Amp: Mute)} & - & - & 1.2 \end{array} \\ V_{AM \text{ in}} & V_{S \text{ automute threshold}} & \begin{array}{c} \text{(Amp: Mute)} \\ \text{(Amp: Play)} \\ \text{Att } < 80 \text{ dB; } P_{Oref} = 4 \text{ W} \\ \text{(Amp: Play)} \\ \text{Att } < 0.1 \text{ dB; } P_O = 0.5 \text{ W} \\ \end{array} \\ V_{MUTE} = 1.2 \text{ V} \\ \text{(Sourced current)} \\ V_{MUTE} = 2.6 \text{ V} & -5 & -5 \end{array} \\ \end{array} $ | dB
dB
μA
μA
ν
ν
v
dB
v | | | | | | | | $ \begin{array}{c} C_T \\ C_{DSS \ talk} \\ \hline \\ I_{SB} \\ C_{T} \\ \hline \\ I_{SB} \\ \hline \\ I_{SB} \\ \hline \\ I_{SI \ tandby \ current} \\ \hline \\ I_{SI \ tandby \ current} \\ \hline \\ I_{SI \ tandby \ current} \\ \hline \\ I_{SI \ tandby \ pin \ current} \\ \hline \\ I_{SI \ tandby \ pin \ current} \\ \hline \\ I_{SI \ tandby \ pin \ current} \\ \hline \\ I_{SI \ tandby \ pin \ current} \\ \hline \\ I_{SI \ tandby \ pin \ current} \\ \hline \\ I_{SI \ tandby \ pin \ current} \\ \hline \\ I_{SI \ tandby \ pin \ current} \\ \hline \\ I_{SI \ tandby \ out \ threshold \ voltage} \\ \hline \\ I_{SI \ tandby \ pin \ threshold \ voltage} \\ \hline \\ I_{SI \ tandby \ pin \ threshold \ voltage} \\ \hline \\ I_{SI \ tandby \ pin \ threshold \ voltage} \\ \hline \\ I_{SI \ tandby \ pin \ threshold \ voltage} \\ \hline \\ I_{SI \ tandby \ pin \ threshold \ voltage} \\ \hline \\ I_{SI \ tandby \ pin \ tandby \ pin \ tandby \ pin p$ | dB μA μA ν ν σ dB ν ν ν ν | | | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | μA | | | | | | | | $V_{St-by} = 0 \qquad $ | μA
V
V
dB
V | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | V V dB V | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | V dB V | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | dB
V
V | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | V | | | | | | | | $V_{M \text{ in}} \text{Mute in threshold voltage} \qquad (Amp: \text{Mute}) \qquad - \qquad - \qquad 1.2$ $V_{AM \text{ in}} V_{S} \text{ automute threshold} (Amp: \text{Mute}) \qquad 6.7 \qquad 7 \qquad (Amp: \text{Play}) \qquad - \qquad 7.5 \qquad 8$ $Ipin23 \text{Muting pin current} \frac{V_{MUTE} = 1.2 \text{ V}}{(Sourced \text{ current})} 7 \qquad 12 \qquad 18$ | V | | | | | | | | $V_{AM \ in} V_{S} \ automute \ threshold \qquad \begin{cases} (Amp: Mute) \\ Att \ge 80 \ dB; \ P_{Oref} = 4 \ W \\ (Amp: Play) \\ Att < 0.1 \ dB; \ P_{O} = 0.5 \ W \end{cases} \qquad \begin{array}{c} - & 7.5 & 8 \\ \hline V_{MUTE} = 1.2 \ V \\ (Sourced \ current) \\ \hline V_{MUTE} = 2.6 \ V \\ \end{array} \qquad \begin{array}{c} 7 & 12 & 18 \\ \hline \end{array}$ | | | | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | Att < 0.1 dB; $P_0 = 0.5 \text{ W}$ - 7.5 8 | V | | | | | | | | Ipin23Muting pin current(Sourced current) 7 12 18 $V_{MUTE} = 2.6 \text{ V}$ -5-18 | V | | | | | | | | | μΑ | | | | | | | | Offset detector | μA | | | | | | | | | Offset detector | | | | | | | | V_{OFF} Detected differential output offset $V_{St-by} = 5 V$ $\pm 1 \pm 2 \pm 3$ | V | | | | | | | | V_{OFF_SAT} Off detector saturation voltage $V_{o} > \pm 3 \text{ V, } I_{off Det} = 1 \text{ mA} $ $0 \text{ V < } V_{off Det} < 18 \text{ V}$ 0.2 0.4 | ٧ | | | | | | | | V_{OFF_LK} Off detector leakage current $V_0 < \pm 1 \text{ V}$ - 0 15 | μΑ | | | | | | | | Clipping detector | | | | | | | | | CD _{LK} Clip detector high leakage current Cd off - 0 1 | μΑ | | | | | | | | CD _{SAT} Clip detector saturation voltage DC On; I _{CD} = 1 mA - 0.2 0.4 | ٧ | | | | | | | | CD _{THD} Clip detector THD level - 2 - | + | | | | | | | ^{1.} Saturated square wave output ### 3.3 Electrical characteristics curves Figure 4. Quiescent current vs. supply voltage Figure 5. Output power vs. supply voltage $(R_L = 4 \Omega)$ Figure 6. Output power vs. supply voltage $(R_L = 2 \Omega)$ Figure 7. Distortion vs. output power $(R_L = 4 \Omega)$ Figure 8. Distortion vs. output power $(R_L = 2 \Omega)$ Figure 9. Distortion vs. frequency $(R_L = 4 \Omega)$ 5/ Figure 10. Distortion vs. frequency $(R_L = 2 \Omega)$ Figure 11. Crosstalk vs. frequency Figure 12. Supply voltage rejection vs. frequency Figure 13. Output attenuation vs. supply voltage Figure 14. Power dissipation and efficiency vs. output power ($R_L = 4 \Omega$, SINE) Figure 15. Power dissipation and efficiency vs. output power ($R_L = 2 \Omega$, SINE) 10/15 Doc ID 17715 Rev 2 Figure 16. Power dissipation vs. output power (R_L = 4 Ω , audio program simulation) Figure 17. Power dissipation vs. output power (R_L = 2 Ω , audio program simulation) Figure 18. ITU R-ARM frequency response, weighting filter for transient pop Application hints TDA7851A ## 4 Application hints #### 4.1 DC offset detector The TDA7851A integrates a DC offset detector to avoid that an anomalous DC offset on the inputs of the amplifier may be multiplied by the gain and result in a dangerous large offset on the outputs which may lead to speakers damage for overheating. The feature works with the amplifier unmuted and no signal at the inputs. #### 4.2 SVR Besides its contribution to the ripple rejection, the SVR capacitor governs the turn ON/OFF time sequence and, consequently, plays an essential role in the pop optimization during ON/OFF transients. To conveniently serve both needs, **its minimum recommended value** is $10 \, \mu F$. ### 4.3 Input stage The TDA7851A's inputs are ground-compatible and can stand very high input signals (± 8 Vpk) without any performance degradation. If the standard value for the input capacitors $(0.1 \mu F)$ is adopted, the low frequency cut-off amounts to 16 Hz. The input capacitors should be 1/4 of the capacitor connected to AC-GND pin for optimum pop performance. ## 4.4 Standby and muting Standby and muting facilities are both CMOS-compatible. In absence of true CMOS ports or microprocessors, a direct connection to Vs of these two pins is admissible but a 470 k Ω equivalent resistance should present between the power supply and the muting and standby pins. R-C cells have always to be used in order to smooth down the transitions for preventing any audible transient noises. About the standby, the time constant to be assigned in order to obtain a virtually pop-free transition has to be slower than 2.5 V/ms. ### 4.5 Heatsink definition Downloaded from DatasheetLib.com - datasheet search engine Under normal usage (4 Ω speakers) the heatsink's thermal requirements have to be deduced from *Figure 16*, which reports the simulated power dissipation when real music/speech programmes are played out. Noise with gaussian-distributed amplitude was employed for this simulation. Based on that, frequent clipping occurrence (worst-case) causes $P_{diss} = 26$ W. Assuming $T_{amb} = 70^{\circ}$ C and $T_{CHIP} = 150$ °C as boundary conditions, the heatsink's thermal resistance should be approximately 2 °C/W. This would avoid any thermal shutdown occurrence even after long-term and full-volume operation. 12/15 Doc ID 17715 Rev 2 TDA7851A Package information ## 5 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. Figure 19. Flexiwatt27 mechanical data and package dimensions 57 Doc ID 17715 Rev 2 13/15 Revision history TDA7851A # 6 Revision history Table 5. Document revision history | Date | Revision | Changes | |---------------|----------|---| | 09-Jul-2010 | 1 | Initial release. | | 13-Jun-2012 2 | | Updated Features on page 1;
Updated Section 3.2: Electrical characteristics on page 7. | 14/15 Doc ID 17715 Rev 2 #### Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST's terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2012 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com Doc ID 17715 Rev 2 15/15