Downloaded from DatasheetLib.com - datasheet search engine

DAC0800/DAC0801/DAC0802 8-Bit Digital-to-Analog Converters

DAC0800/DAC0801/DAC0802 8-Bit Digital-to-Analog Converters

General Description

The DAC0800 series are monolithic 8-bit high-speed current-output digital-to-analog converters (DAC) featuring typical settling times of 100 ns. When used as a multiplying DAC, monotonic performance over a 40 to 1 reference current range is possible. The DAC0800 series also features high compliance complementary current outputs to allow differential output voltages of 20 Vp-p with simple resistor loads as shown in Figure 1. The reference-to-full-scale current matching of better than $\pm\,1$ LSB eliminates the need for full-scale trims in most applications while the nonlinearities of better than $\pm 0.1\%$ over temperature minimizes system error accumulations

The noise immune inputs of the DAC0800 series will accept TTL levels with the logic threshold pin, $V_{\text{LC}}\text{,}$ grounded. Changing the V_{LC} potential will allow direct interface to other logic families. The performance and characteristics of the device are essentially unchanged over the full $\pm 4.5V$ to $\pm\,18V$ power supply range; power dissipation is only 33 mW with $\pm 5V$ supplies and is independent of the logic input states.

The DAC0800, DAC0802, DAC0800C, DAC0801C and DAC0802C are a direct replacement for the DAC-08, DAC-08A, DAC-08C, DAC-08E and DAC-08H, respectively.

Features

Fast settling output current	100 ns
Full scale error	±1 LSB
 Nonlinearity over temperature 	$\pm 0.1\%$
Full scale current drift	\pm 10 ppm/°C
 High output compliance 	-10V to $+18V$
 Complementary current outputs 	
 Interface directly with TTL, CMOS, I 	PMOS and others
2 quadrant wide range multiplying c	apability
Wide power supply range	\pm 4.5V to \pm 18V
Low power consumption	33 mW at \pm 5V
Low cost	

$10V \xrightarrow{5k} 15 \\ 0.1 \\ 10 \\ 0.1 \\ 0.$
$ \underbrace{\downarrow}_{V^{-} 0.01 \mu F} \underbrace{I}_{V^{+}} \underbrace{I}_{V^{+}} \underbrace{I}_{V^{+}} \underbrace{I}_{V^{+}} \underbrace{I}_{V^{+}} \underbrace{I}_{V^{+}} \underbrace{I}_{V^{+}} \underbrace{I}_{V^{+}} \underbrace{I}_{V^{+} V^{+}} \underbrace{I}_{V^{+} V^{+} V^{+} V^{+} \underbrace{I}_{V^{+} V^{+}} \underbrace{I}_{V^{+} V^{+} V^{+} \underbrace{I}_{V^{+} V^{+} V^{+} \underbrace{I}_{V^{+} V^{+} V^{+} V^{+} V^{+} V^{+} V^{+} \underbrace{I}_{V^{+} V^{+} V^{+} V^{+} \underbrace{I}_{V^{+} V^{+} V^{+} V^{+} \underbrace{I}_{V^{+} V^{+} V^{+} V^{+} V^{+} V^$

Ordering Information

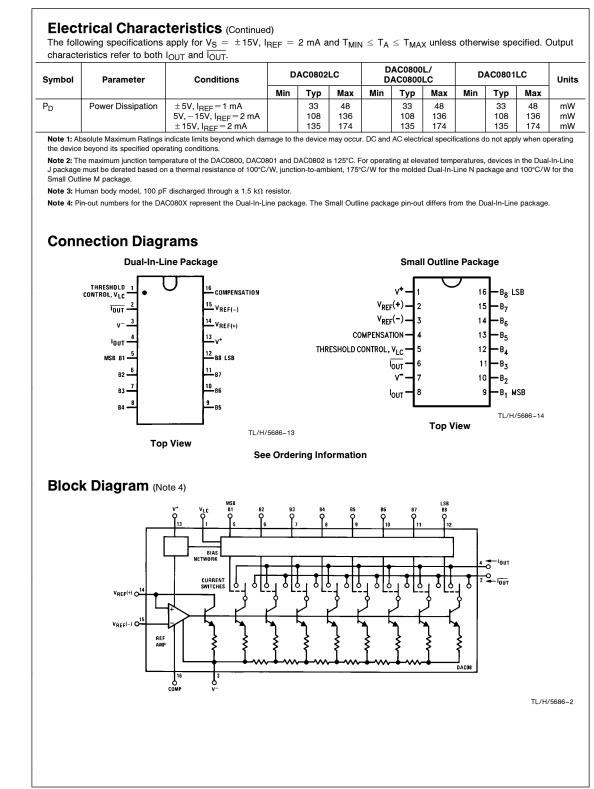
Typical Applications

Non-Linearity	Temperature	Order Numbers								
	Range	J Package	(J16A)*	N Package	(N16A)*	SO Package (M16A)				
±0.1% FS	$0^{\circ}C \le T_{A} \le +70^{\circ}C$	DAC0802LCJ	DAC-08HQ	DAC0802LCN	DAC-08HP	DAC0802LCM				
±0.19% FS	$-55^{\circ}C \le T_A \le +125^{\circ}C$	DAC0800LJ	DAC-08Q							
±0.19% FS	$0^{\circ}C \leq T_{A} \leq + 70^{\circ}C$	DAC0800LCJ	DAC-08EQ	DAC0800LCN	DAC-08EP	DAC0800LCM				
±0.39% FS	$0^{\circ}C \leq T_{A} \leq + 70^{\circ}C$			DAC0801LCN	DAC-08CP	DAC0801LCM				
*Devices may be or	dered by using either order numb	er.								

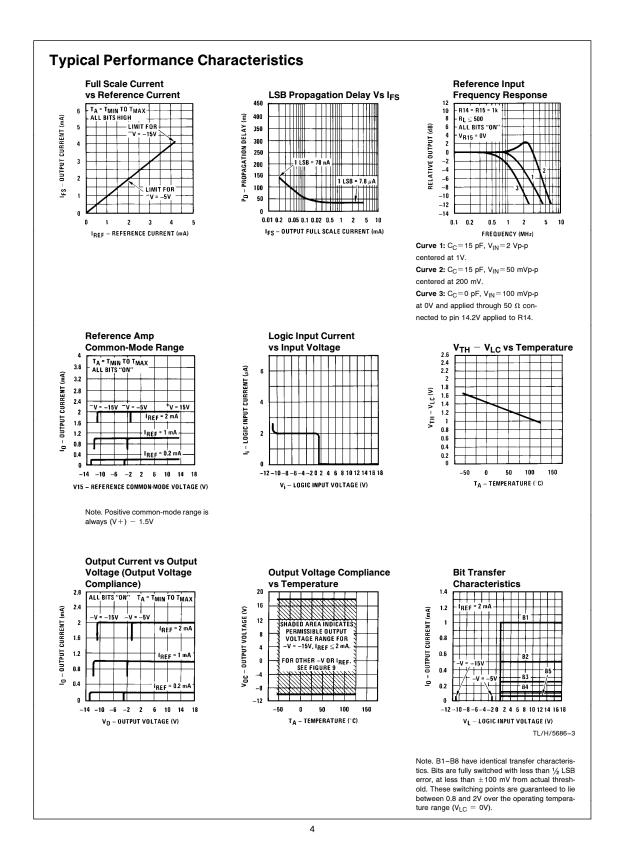
© 1995 National Semiconductor Corporation

RRD-B30M115/Printed in U. S. A.

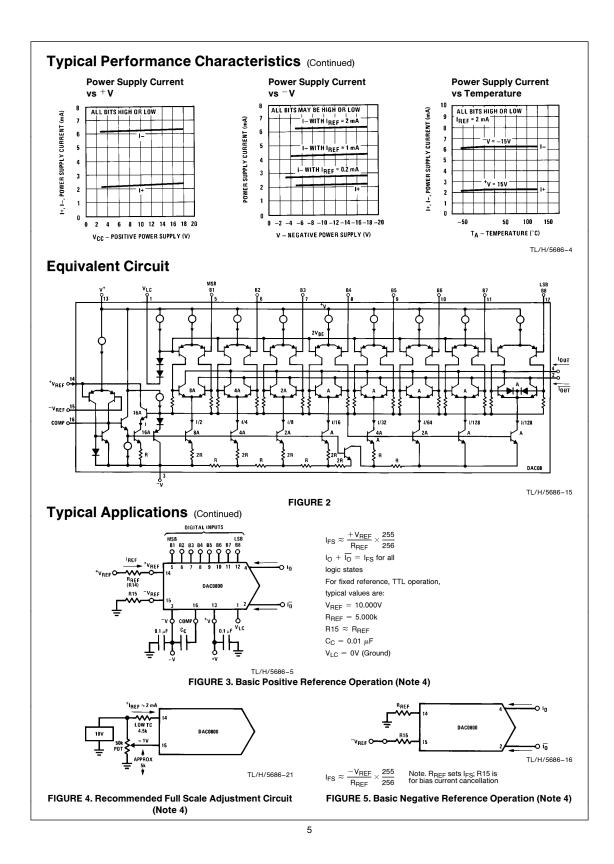
TL/H/5686-1

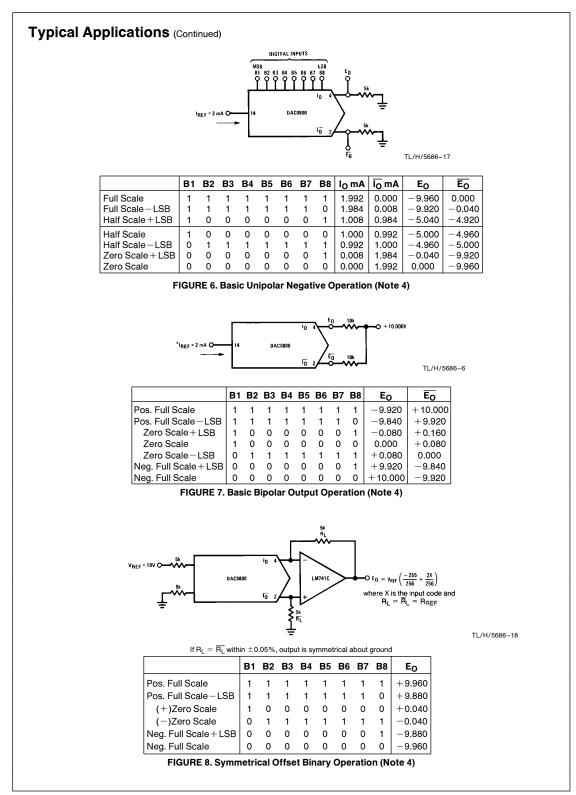


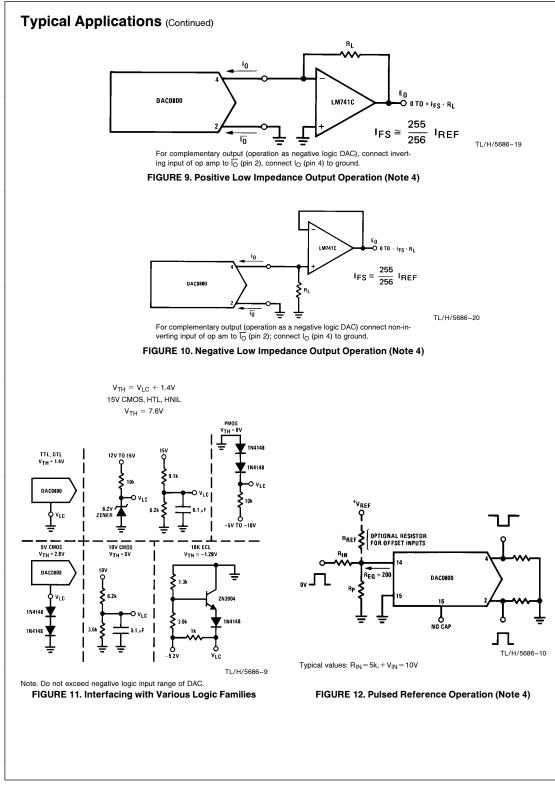
If Military/Aerospace specified please contact the National	Lead Temp. (Soldering, 10 seconds) Dual-In-Line Package (plastic)						
Office/Distributors for availability	Dual-In-Line Packa	age (ceram	ic)		300°C		
Supply Voltage (V $^+ - V^-$)	\pm 18V or 36V	Surface Mount Pa	0			215°C	
Power Dissipation (Note 2)	500 mW	Vapor Phase (60 seconds)					
Reference Input Differential Voltage		Infrared (15 sec	onds)			220°0	
(V14 to V15)	V^- to V^+	On a sating O					
Reference Input Common-Mode Ra	Operating Conditions (Note 1)						
(V14, V15)	V ⁻ to V ⁺		Min	Max	Units		
Reference Input Current	5 mA	Temperature (T _A)					
Logic Inputs	V^- to V^- plus 36V	DAC0800L	-55	+ 125	°C		
Analog Current Outputs (V $_{S}^{-} = -1$	5V) 4.25 mA	DAC0800LC	0	+70	°C		
ESD Susceptibility (Note 3)	TBD V	DAC0801LC	0	+70	°C		
Storage Temperature	-65°C to +150°C	DAC0802LC	0	+70	°C		

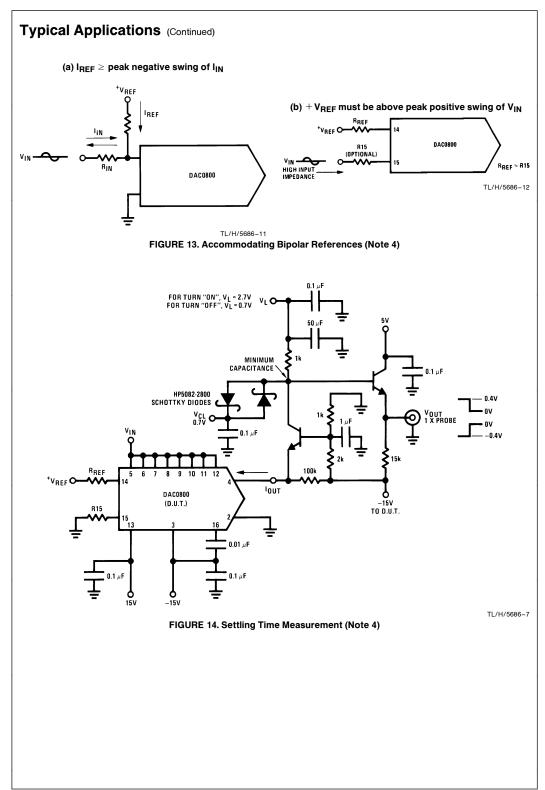

 $\begin{array}{l} \hline \textbf{Electrical Characteristics} \ \text{The following specifications apply for } V_S = \pm 15 \text{V}, \ \text{I}_{\text{REF}} = 2 \ \text{mA and } \ \text{T}_{\text{MIN}} \leq \text{T}_{\text{A}} \leq \text{T}_{\text{MAX}} \ \text{unless otherwise specified. Output characteristics refer to both } I_{\text{OUT}} \ \text{and } \ \overline{I}_{\text{OUT}}. \end{array}$

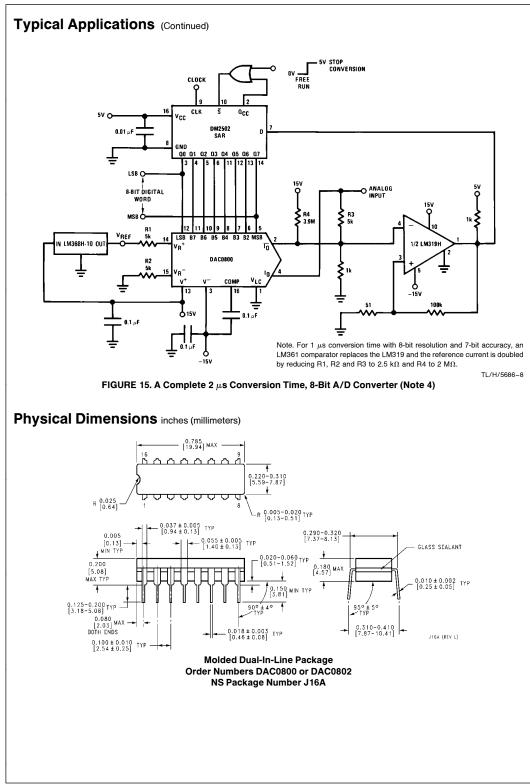
Symbol	Parameter	Conditions	DAC0802LC			DAC0800L/ DAC0800LC			DAC0801LC			Units
			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	1
	Resolution Monotonicity Nonlinearity		8 8	8 8	8 8 ±0.1	8 8	8 8	8 8 ±0.19	8 8	8 8	8 8 ±0.39	Bits Bits %FS
t _s	Settling Time	To $\pm 1/2$ LSB, All Bits Switched "ON" or "OFF", T _A = 25°C DAC0800L DAC0800LC		100	135		100 100	135 150		100	150	ns ns ns
tPLH, tPHL	Propagation Delay Each Bit All Bits Switched	T _A =25°C		35 35	60 60		35 35	60 60		35 35	60 60	ns ns
TCI _{FS}	Full Scale Tempco			±10	±50		±10	± 50		±10	±80	ppm/°C
V _{OC}	Output Voltage Compliance	Full Scale Current Change <½ LSB, R _{OUT} >20 MΩ Typ	-10		18	-10		18	-10		18	V
I _{FS4}	Full Scale Current	V _{REF} =10.000V, R14=5.000 kΩ R15=5.000 kΩ, T _A =25°C	1.984	1.992	2.000	1.94	1.99	2.04	1.94	1.99	2.04	mA
IFSS	Full Scale Symmetry	IFS4-IFS2		±0.5	±4.0		±1	±8.0		±2	±16	μA
Izs	Zero Scale Current			0.1	1.0		0.2	2.0		0.2	4.0	μA
IFSR	Output Current Range	$V^{-} = -5V$ $V^{-} = -8V$ to $-18V$	0 0	2.0 2.0	2.1 4.2	0 0	2.0 2.0	2.1 4.2	0	2.0 2.0	2.1 4.2	mA mA
V _{IL} V _{IH}	Logic Input Levels Logic "0" Logic "1"	V _{LC} =0V	2.0		0.8	2.0		0.8	2.0		0.8	v v
lıL lıH	Logic Input Current Logic "0" Logic "1"	$V_{LC} = 0V$ -10V $\leq V_{IN} \leq +0.8V$ 2V $\leq V_{IN} \leq +18V$		-2.0 0.002	-10 10		-2.0 0.002	-10 10		-2.0 0.002	-10 10	μΑ μΑ
VIS	Logic Input Swing	V ⁻ =-15V	-10		18	-10		18	-10		18	V
VTHR	Logic Threshold Range	$V_S = \pm 15V$	-10		13.5	-10		13.5	-10		13.5	V
I ₁₅	Reference Bias Current			-1.0	-3.0		-1.0	-3.0		-1.0	-3.0	μΑ
dl/dt	Reference Input Slew Rate	(Figure 12)	4.0	8.0		4.0	8.0		4.0	8.0		mA/μs
PSSI _{FS+}	Power Supply Sensitivity	4.5V≤V+≤18V		0.0001	0.01		0.0001	0.01		0.0001	0.01	%/%
PSSI _{FS} -		-4.5V≤V ⁻ ≤18V I _{REF} =1mA		0.0001	0.01		0.0001	0.01		0.0001	0.01	%/%
+ -	Power Supply Current	$V_S = \pm 5V$, $I_{REF} = 1$ mA		2.3 -4.3	3.8 -5.8		2.3 -4.3	3.8 - 5.8		2.3 -4.3	3.8 -5.8	mA mA
+ -		$V_S = 5V$, -15V, $I_{REF} = 2 \text{ mA}$		2.4 -6.4	3.8 -7.8		2.4 -6.4	3.8 - 7.8		2.4 -6.4	3.8 - 7.8	mA mA
1+		$V_S = \pm 15V$, $I_{REF} = 2 \text{ mA}$		2.5 -6.5	3.8 -7.8		2.5 -6.5	3.8 7.8		2.5 -6.5	3.8 -7.8	mA mA

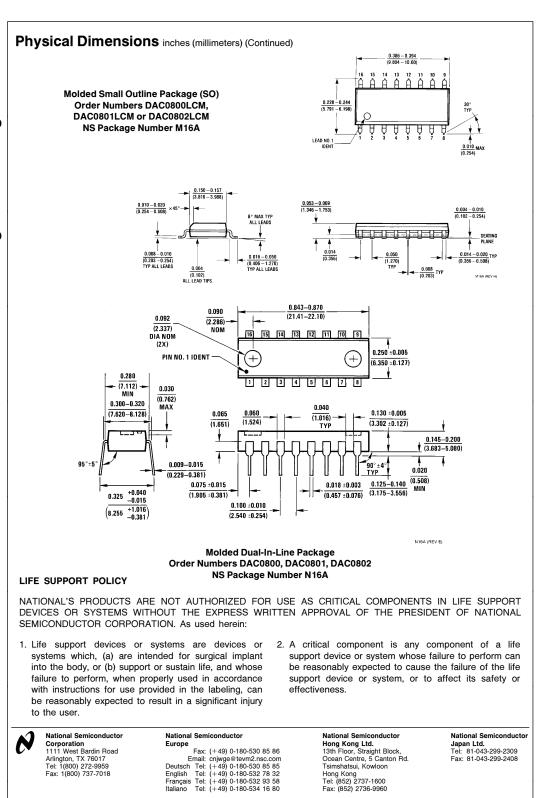

2




3




Downloaded from DatasheetLib.com - datasheet search engine



National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.