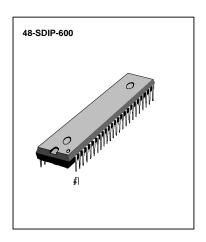
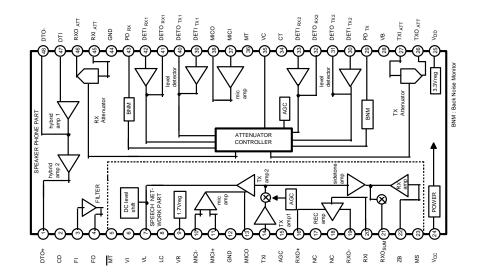
SPEAKER PHONE WITH SPEECH NETWORK

INTRODUCTION


The KA8601C is a monolithic integrated circuit for use in high performance speaker phone system.

The KA860IC consists of speaker phone and speech network. Speaker phone includes attenuators, amplifiers, level detectors, attenuator control, hybrid amplifiers, regulator and AGC circuit. Speech network includes transmit amp, receive amp, voltage regulator for dialer, side tone control, and line equalizer.

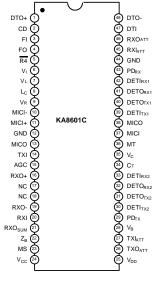
FEATURES


Speaker Phone

- Low Operating Voltage (3.0 ~ 6.5V)
- High Attenuator Gain Range (52dB)
- Improved Sensitivity (Four-point Signal Sensing)
- Chip Disable for Active or Standby Operation - Microphone Amp Gain set by External Components
- Speech Network
- Low Operating Voltage (1.5V : speech)
 Regulated Voltage for Dialer (Typically 3.3V)
 Transmit, Receive, Side Tone Gains set by
- External Components
- Mute Input for DTMF Dialing

ORDERING INFORMATION

Device	Package	Operating Temperature
KA8601C	48-SDIP-600	- 25°C ~ + 75°C



BLOCK DIAGRAM

KA8601C

SPEAKER PHONE WITH SPEECH NETWORK

PIN CONFIGURATION

PIN DESCRIPTION

Pin No	Symbol	Description			
1	DTO+	Output of the second hybrid amplifier.			
2	CD	Chip Disable. A logic low (<0.8V) sets normal operation.			
3	FI	Filter input.			
4	FO	Filter output.			
5	MT	Mute input. A logic "1" sets normal speech mode.			
6	VI	A resistor connected from this pin to V_{SS} sets the AC terminating impedance.			
7	VL	Power supply for the speech network. Supply voltage is derived from loop current. T_X amp output operates on this pin.			
8	L _c	Resistor at this pin set the DC characteristics of the circuit.			
9	V _R	A 1.7 volt regulated output which can be used to bias the mic.			
10	MICI-	Inverting differential input to the mic amp.			
11	MICI+	Non-inverting differential input to the mic amp.			
12	GND	Ground pin for the speech network.			
13	MICO	Mic amp output.			
14	TXI	Input to the T_X amp from the Mic amp.			
15	AGC	Loop current sensing input.			

KA8601C

SPEAKER PHONE WITH SPEECH NETWORK

PIN DESCRIPTION (continued)

Pin No	Symbol	Description				
16	RXO+	R _x amp non-inverting differential output.				
17	NC	No connection.				
18	NC	No connection.				
19	RXO-	R _x amp inverting differential output.				
20	RXI	Input to the R _x amp.				
21	RXO _{SUM}	Summed output of the R _x current amp.				
22	ZB	Input to the R _x current amp.				
23	MS	Mode select input. A logic "1" \rightarrow pulse dialing, A logic "0" \rightarrow tone (DTMF) dialing.				
24	V _{cc}	A supply voltage pin for the speaker phone part.				
25	V _{DD}	A regulated 3.3 volt output for an external dialer.				
26	TXO _{ATT}	Output of the T _x attenuator.				
27	TXIATT	Input to the T _x attenuator.				
28	VB	This voltage is a system AC ground, and biases the volume control. A filter cap is required.				
29	PD TX	An RC at this pin sets the time constant for the T_X background monitor.				
30	DETI _{TX} 2	Input to the T _x level detector on the mike/speaker side.				
31	DETO _{TX} 2	Output of the T _X level detector on the mike/speaker side.				
32	DETO _{RX} 2	Output of the R _x level detector on the mike/speaker side.				
33	DETI _{RX} 2	Input to the R _x level detector on the mike/speaker side.				
34	CT	This pin sets the response time for the circuit to switch modes.				
35	Vc	Volumn control input.				
36	МТ	Mute input. A logic low (<0.8V) sets normal operation. A logic high (>2.0V) mutes the mic amp.				
37	MICI	Input and summing node of the mic amp.				
38	MICO	Output of the mic amp is set by external resistors.				
39	DET _{TX} 1	Input to the T _x level detector on the line side.				
40	DETO _{TX} 1	Output of the T_X level detector on the line side.				
41	DETO _{RX} 1	Output of the R _x level detector on the line side.				
42	DETI _{RX} 1	Input to the R _x level detector on the line side.				
43	PD _{RX}	A RC at this pin sets the time constant for the R_X background monitor.				
44	GND	Ground pin for the speaker phone part.				
45	RXI ATT	Input to the R _x attenuator and dial tone detector.				
46	RXO ATT	Output of the R _x attenuator.				
47	DTI	Input and summing node of the mic amp.				
48	DTO -	Output of the first hybrid amplifier.				

SPEAKER PHONE WITH SPEECH NETWORK

ABSOLUTE MAXIMUM RATINGS

	Characteristic	Symbol	Value	Unit
	Supply Voltage	V _{CC}	- 1.0 ~ + 7.0	V
Speaker	Voltage at V _c	V _{I (VC)}	- 1.0 ~ V _{CC} + 0.5	V
Phone	Voltage at CD,MT	VI (CM)	-1.0 ~ V _{CC} + 1.0	V
	Voltage at T _x I, R _x I, HFI	V _{I (TRH)}	$-0.5 \sim V_{CC} + 0.5$	V
	Supply Voltage	Vcc	- 1.0 ~ + 12	V
Speech	Supply Voltage for dialer	V _{DD}	- 1.0 ~ + 6.0	V
Network	Voltage at MT _S , MS	V _{I (MS)}	- 1.0 ~ V _{DD} + 0.5	V
	Current Through V_L , L_C	II (VL, LC)	130	mA
	Current into Z _B	I _{I (ZB)}	3	mA
Oper	ating Temperature	T _{OPR}	- 25 ~ + 75	°C
Stora	age Temperature	T _{STG}	- 65 ~ + 150	°C

ELECTRICAL CHARACTERISTICS (Ta = 25°C)

Characteristic	Symbol	Test Conditions		Min	Тур	Max	Unit		
SPEECH NETWORK (Ta = 25°C, unless otherwise noted)									
		Speech Mode	$I_L = 30 \text{mA}$	3.0	3.9	4.7			
Line Voltage	VL	Pulse Mode	I _L = 120mA	8	9.8	11.5	V		
		Tone Mode	$I_L = 30 \text{mA}$	4.4	5.1	6.5			
V _R Voltage	V _R	$I_L = 30 \text{mA}$	Speech Mode	1.55	1.7	1.85	V		
ME Operating Voltage	N	$V_L = 4.5V$	Tone Mode	3.0	3.3	3.8	v		
MF Operating Voltage	V _{DD (MF)}	Tone Mode	$I_{DD} = 1.6 \text{mA}$	3.0	3.3	3.8			
MF Operating Current (Max)		I _L = 30mA	Speech Mode	0.5	1.1	2.0	mA		
	I _{DD MF (MAX)}		Pulse Mode	2	2.8	4			
			Tone Mode	2	2.8	4			
MICO Bias Voltage	VBIAS (MPO)	I _L = 30mA	Speech Mode	0.8	1.08	1.4	V		
TXI Bias Voltage	VBIAS (TxTs)	$I_L = 30 \text{mA}$	Speech Mode	0.04	0.086	0.2	V		
MIC Amp Gain	G _{V (MIC)}	$I_L = 30 \text{mA}$	Speech Mode	27	30	33	dB		
MIC Common Mode Rejection Ratio	CMRR _(MIC)		-	30	64	-	dB		
MIC Gain Reduction	$\Delta G_{V(MIC)}$	$\overline{MT} = 0V$		-10	-60	-	dB		
T _x Gain	G _{V (TX)}	Speech Mode	$I_L = 30 \text{mA}$	30	34.8	60			
			$I_L = 80 \text{mA}$	28	31	34	dB		
T _X Distortion	THD TX	$I_L = 30 \text{mA}$	Speech Mode	-	-	2	%		
R _x Gain	G _{V (RX)}	Speech Mode	$I_L = 30 \text{mA}$	-15	-10.5	-2	dB		
			I _L = 80mA	-17	-14	-10	aв		
R _x Distortion	THD _{RX}	$I_L = 30 \text{mA}$	Speech Mode	-	-	2	%		
Side Tone Gain	G _{V (ST)}	$I_L = 30 \text{mA}$	Speech Mode	-	10	15	dB		

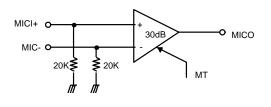
SPEAKER PHONE WITH SPEECH NETWORK

ELECTRICAL CHARACTERISTICS (Continued)

Characteristic	Symbol	Test Condition		Min	Тур	Max	Unit
Side Tone Rejection	RST			20	25	-	dB
MUTE Input Impedance	Z _{I (MUTE)}			-	60	-	KΩ
MUTE Input Low Voltage	VIL (MUTE)			-		1.0	
MUTE Input High Voltage	VIH (MUTE)			V_{DD}		-	
				-0.3			V
MS Input Low Voltage	V _{IL (MS)}			-		0.8	
MS Input High Voltage	V _{IH (MS)}		1	2.0		-	
			Speech Mode	2.1	2.9	3.5	
L _c Level Shift	ΔV_{LC}	$I_L = 30 \text{mA}$	Pulse Mode	2.1	2.9	3.5	V
			Tone Mode	3.4	4.3	5.2	
SPEAKER PHONE (Ta = 25°C, V _C	cc = 5.0V, unless	otherwise noted)	•				
			CD = 0.8V	-	5.5	8.0	mA
Operating Current	Icc	$V_{CC} = 6.5V$	CD = 2V	-	0.6	0.8	
				1.8	2.1	2.4	
Reference Voltage	V _{REF}		$I_L = 1.0 \text{mA}$	1.5	1.7	1.9	v
		V _{CC} = 3.5V		-	1.3	-	
	G _{ATT (RX)}	$V_{\rm C} = V_{\rm B}$		4.0	6.0	8.0	
R _x Attenuator Gain		$V_{CC} = 3.5V, V_{C} = V_{B}$		4.0	6.0	8.0	dB
		$V_{CC} = 2.8V, V_C = V_B$		-	-19	-11	
R _X Attenuator Gain Change	$\Delta G_{ATT (RX)}$	V _{CC} = 3.5V, to 5.0V		-0.5	0	+0.5	dB
R _X Attenuator AGC Gain Change	$\Delta G_{\text{ATT AGC (RX)}}$	V _{CC} = 2.8V, to 5.0V		-	-25	-15	dB
R _X Attenuator Gain (Idle Mode)	GATT RX (IM)	$V_{C} = V_{B}$		-22	-20	-17	dB
R _X Attenuator Gain Range	G _{ATT (RX)}	$V_{C} = V_{B} (R_{X} \text{ to } T_{X})$	(Mode)	49	52	54	dB
R _X Volume Control Range	G _{V CTL (RX)}	$V_{\rm C} = 0.1 V_{\rm B}$		27	35	-	dB
R _X DC Output Voltage	V _{O (RX)}			-	VB	-	V
R _X DC Output Voltage Change	$\Delta V_{O(RX)}$	R_X to T_X Mode		-	± 10	±150	mV
R _X DC Output High Voltage	V _{OH (RX)}	$V_{RXI} = 3.5V$		3.7	-	-	V
R_X DC Output Low Voltage (with respect to V _B)	V _{OL (RX)}	$V_{RXI} = 1V$		-	-1.5	-1.0	V
R _X Mode Distortion	THD _{RX}			-	0.5	3	%
		R _x Mode		-	+240	-	
C_{T} Voltage (with respect to $V_{\text{B}})$	V _{CT}	Idle Mode		-	0	-	mV
		T _x Mode		-	-240	-	
Dial Tone Detector Threshold	V _{TH (DET)}	$V_C = V_B, V_{RXI} = 3$.0V	10	15	20	mV
T _x Attenuator Gain	GATT (TX)			4.0	6.0	8.0	dB
T _X Attenuator Gain Range	G _{ATT (TX)}			49	52	54	dB
T _X Output DC Voltage	V _{O (TX)}			-	VB	-	V
T _X Output DC Voltage Change	ΔV _{O (TX)}			-	± 30	±150	mV

ELECTRICAL CHARACTERISTICS (Continued)

Characteristic	Symbol	Test Conditions	Min	Тур	Мах	Unit
T _x Output High Voltage	V _{OH (TX)}	V _{TXI} = 3.5V	3.7	-	-	V
T _X Output Low Voltage	V _{OL (TX)}	V _{TXI} = 1.0V	-	0.5	1	V
T _X Mode Distortion	THD _{TX}		-	0.8	3	%
MIC Voltage Gain	G _{V (MIC)}		70	80	-	dB
MIC Output Offset Voltage	V _{OO (MIC)}		-50	0	+50	mV
MIC Output High Voltage	V _{OH (MIC)}	$V_{MIC} = 1.0V$	3.7	-	-	V
MIC Output Low Voltage	V _{OL (MIC)}	V _{MIC} = 3.0V	-	-	200	mV
MIC Input Bias Current	IBIAS (MIC)		-	-40	-	nA
Muting (Gain)	G _{V (MUTE)}	$V_{MT} = 2V, f = 1KHz$	-55	-	-	dB
MIC Amp Distortion	THD MIC		-	0.15	-	%
MUTE Input High Voltage	VIH (MUTE)	0.3 KHz $\leq f \leq 10$ KHz	2.0	-	V _{CC}	V
MUTE Input Low Voltage	VIL (MUTE)		0	-	0.8	V
Open Loop Gain (Hybrid Amp)	G _{V (HA)}		60	80	-	dB
DTO-Output High Voltage	V _{OH (DTO -)}		3.7	-	-	V
DTO-Output Low Voltage	V _{OL (DTO -)}		-	-	250	mV
DTO+Output High Voltage	V _{OH (DTO +)}	I ₀ = -5mA	3.7	-	-	V
DTO+Output Low Voltage	V _{OL (DTO +)}	I _O = 5mA	-	-	250	mV
DTO Distortion	THD DTO	I ₀ = -5mA	-	0.3	-	%
Filter Offset Voltage	V _{IO (F)}	I _O = 5mA	-22	-90	0	mV
Filter Input Bias Current	VBIAS (F)		0	-50	-	mA



APPLICATION INFORMATION FUNCTION DESCRIPTION

SPEECH NETWORK

1. MICROPHONE AMPLIFIER

This microphone amplifier is equipped with a fixed gain (30dB). Its basic configuration is shown in figure 3.

This amplifier has a mute function. If a mute signal from the dialer is inputted when the speech network is in the mute mode, the microphone amplifier will be muted.

2. VOLTAGE REGULATOR (DIALER INTERFERENCE)

This voltage regulator has a minimum output voltage of 3.1 volts. When the dialer is not in motion, its minimum current is 1.0mA, where as when the dialer is moving the minimum current is 2.2mA.

3. VOLTAGE REFERENCE

Generally when in the voltage reference mode, the microphone's bias voltage is used, but when in the TXI_{ATT} mode, DC bias voltage is used. The output voltage of the voltage reference is a minimum of 1.6 volts.

SPEAKER PHONE

1. MICROPHONE AMPLIFIER

This device amplifies outside microphone signals, which are inputted while in the inverting mode. As it alters elements, the microphone amplifier allows for them to be modulated. Its open loop gain is 80dB, while the band width is typically 1.0KHz. It has a mute function, and when operating in the mute mode at least 2.0V, the microphone amplifier gain is reduced to around 40dB. If the mute mode is not used, it must connected with the ground.

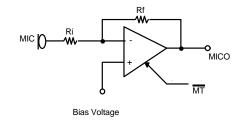
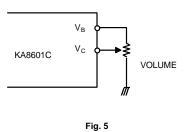



Fig. 4

2. VOLUME CONTROL

The volume control can only be applied in the receive mode. If the voltage of the V_c mode is the same as the V_B , the receive attenuator gain is maximized and the transmit gain is minimized. At the same time, if the V_c mode voltage is less than the V_B , the receive attenuator gain is reduced.

3. VOICE DETECTION FUNCTION

The voice detection function compares the microphone amplifier output level with the outside audio amplifier level and the transmit attenuator output level with the receive attenuator input level, after which they are inputted into the control box. The block diagram of the voice detection function is as follows:

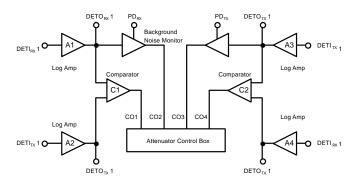


Fig. 6

It is useful to use a background noise monitor when high background noise occurs. When the input signals to the background noise monitor are increased, voltage for the PD_{RX} (PD_{TX}) mode is stably increased. The increase time is determined by 100K Ω and 47 μ F.

4. ATTENUATOR CONTROL BOX

In figure 6, each signal coming into the log amplifier is amplified and then inputted into the comparator (C1, C2). The comparator compares the amplified signal levels, after which they are inputted into the attenuator control box. The attenuator control box processes these signals (CO1, CO2, CO3, CO4) as logic signals, and which are put into one of the following modes:

KA8601C

SPEAKER PHONE WITH SPEECH NETWORK

1. Receive Mode

2. Transmit Mode

3. Slow Idle Mode 4. Fast Idle Mode

Which of the above modes is to be determined depending on the following conditions:

1) Receive Mode

 $\mathsf{DETO}_{\mathsf{TX}}\mathsf{1} < \mathsf{DETO}_{\mathsf{RX}}\mathsf{1}, \, \mathsf{DETO}_{\mathsf{TX}}\mathsf{2} < \mathsf{DETO}_{\mathsf{RX}}\mathsf{2}, \, \mathsf{PD}_{\mathsf{TX}}, \, \mathsf{X}, \, \mathsf{PD}_{\mathsf{RX}} : \mathsf{1}$

2) Transmit Mode

DETO_{TX}1 > DETO_{RX}1, DETO_{TX}2 > DETO_{RX}2, PD_{TX} : 1, PD_{RX} : X

3) Slow Idle Mode

 $\begin{array}{l} \mathsf{DETO}_{\mathsf{TX}}1 > \mathsf{DETO}_{\mathsf{RX}}1, \, \mathsf{DETO}_{\mathsf{TX}}2 > \mathsf{DETO}_{\mathsf{RX}}2, \, \mathsf{PD}_{\mathsf{TX}}: 0, \, \mathsf{PD}_{\mathsf{RX}}: X\\ \mathsf{DETO}_{\mathsf{TX}}1 < \mathsf{DETO}_{\mathsf{RX}}1, \, \mathsf{DETO}_{\mathsf{TX}}2 < \mathsf{DETO}_{\mathsf{RX}}2, \, \mathsf{PD}_{\mathsf{TX}}: 0, \, \mathsf{PD}_{\mathsf{RX}}: X\\ \mathsf{DETO}_{\mathsf{TX}}1 < \mathsf{DETO}_{\mathsf{RX}}1, \, \mathsf{DETO}_{\mathsf{TX}}2 > \mathsf{DETO}_{\mathsf{RX}}2, \, \mathsf{PD}_{\mathsf{TX}}: 0, \, \mathsf{PD}_{\mathsf{RX}}: X\\ \mathsf{DETO}_{\mathsf{TX}}1 > \mathsf{DETO}_{\mathsf{RX}}1, \, \mathsf{DETO}_{\mathsf{TX}}2 < \mathsf{DETO}_{\mathsf{RX}}2, \, \mathsf{PD}_{\mathsf{TX}}: 0, \, \mathsf{PD}_{\mathsf{RX}}: X\\ \end{array}$

4) Fast Idle Mode

 $\begin{array}{l} \mathsf{DETO}_{TX}1 > \mathsf{DETO}_{RX}1, \ \mathsf{DETO}_{TX}2 < \mathsf{DETO}_{RX}2, \ \mathsf{PD}_{TX}:0, \ \mathsf{PD}_{RX}:0\\ \mathsf{DETO}_{TX}1 < \mathsf{DETO}_{RX}1, \ \mathsf{DETO}_{TX}2 > \mathsf{DETO}_{RX}2, \ \mathsf{PD}_{TX}:Y, \ \mathsf{PD}_{RX}:Y\\ * "<" \ \text{and ">" refer to voltage level : "X" refers to "It doesn't matter : "Y" is not zero \end{array}$

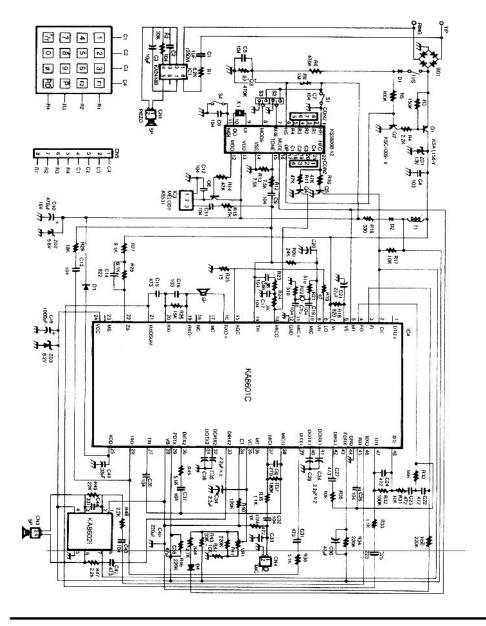
5. SWITCHING TIME

The switching time of the speaker phone is determined by the C_{T} and R_{T} of the outside elements.

1. Idle Mode $\rightarrow \mathsf{R}_X$ or T_X Mode

ST = 4,000 X C_T

2. $T_X \text{ or } R_X \text{ Mode} \rightarrow \text{Fast Idle Mode} \\ \text{ST} = 2,000 \text{ X } C_T$


3. T_X or R_X Mode \rightarrow Slow Idle Mode

 $ST = R_T X C_T$

* C_T, R_T refer to the capacitor and resistor between Pin 34 and V_{CC}.

APPLICATION CIRCUIT

