

CD4066BMS

CMOS Quad Bilateral Switch

December 1992

Features

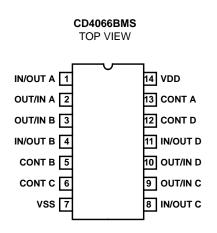
- For Transmission or Multiplexing of Analog or Digital Signals
- High Voltage Types (20V Rating)
- 15V Digital or ±7.5V Peak-to-Peak Switching
- 125 Ω Typical On-State Resistance for 15V Operation
- Switch On-State Resistance Matched to Within 5 Ω Over 15V Signal Input Range
- On-State Resistance Flat Over Full Peak-to-Peak Signal Range
- High On/Off Output Voltage Ratio
 80dB Typ. at FIS = 10kHz, RL = 1kΩ
- High Degree of Linearity: <0.5% Distortion Typ. at FIS = 1kHz, VIS = 5Vp-p, VDD VSS \geq 10V, RL = 10k Ω
- Extremely Low Off-State Switch Leakage Resulting in Very Low Offset Current and High Effective Off-State Resistance: 10pA Typ. at VDD - VSS = 10V, T_A = +25°C
- Extremely High Control Input Impedance (Control Circuit Isolated from Signal Circuit): 10¹²Ω Typ.
- Low Crosstalk Between Switches: -50dB Typ. at FIS = 8MHz, RL = 1k Ω
- Matched Control Input to Signal Output Capacitance: Reduces Output Signal Transients
- Frequency Response, Switch on = 40MHz (Typ.)
- 100% Tested for Quiescent Current at 20V
- 5V, 10V and 15V Parametric Ratings
- Meets All Requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of "B" Series CMOS Devices"

Applications

- Analog Signal Switching/Multiplexing
 - Signal Gating Modulator
 - Squelch Control Demodulator
 - Chopper Commutating Switch
- Digital Signal Switching/Multiplexing
- Transmission Gate Logic Implementation
- Analog to Digital & Digital to Analog Conversion
- Digital Control of Frequency, Impedance, Phase, and Analog Signal Gain

Description

CD4066BMS is a quad bilateral switch intended for the transmission or multiplexing of analog or digital signals. It is pin for pin compatible with CD4016B, but exhibits a much lower on state resistance. In addition, the on-state resistance is relatively constant over the full input signal range.


The CD4066BMS consists of four independent bilateral switches. A single control signal is required per switch. Both the p and the n device in a given switch are biased on or off simultaneously by the control signal. As shown in Figure 1, the well of the n channel device on each switch is either tied to the input when the switch is on or to VSS when the switch is off. This configuration eliminates the variation of the switch transistor threshold voltage with input signal, and thus keeps the on-state resistance low over the full operating signal range.

The advantages over single channel switches include peak input signal voltage swings equal to the full supply voltage, and more constant on-state impedance over the input signal range. For sample and hold applications, however, the CD4016B is recommended.

The CD4066BMS is supplied in these 14-lead outline packages:

Braze Seal DIP	H4Q
Frit Seal DIP	H1B
Ceramic Flatpack	H3W

Pinout

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.

1-888-INTERSIL or 321-724-7143 | Copyright © Intersil Corporation 1999

Absolute Maximum Ratings

DC Supply Voltage Range, (VDD)0.5V to +20V
(Voltage Referenced to VSS Terminals)
Input Voltage Range, All Inputs0.5V to VDD +0.5V
DC Input Current, Any One Input±10mA
Operating Temperature Range55°C to +125°C
Package Types D, F, K, H
Storage Temperature Range (TSTG)
Lead Temperature (During Soldering) +265°C
At Distance 1/16 \pm 1/32 Inch (1.59mm \pm 0.79mm) from case for
10s Maximum

Reliability Information

Thermal Resistance	θ_{ia}	θ_{ic}
Ceramic DIP and FRIT Package	80°Č/W	θ _{jc} 20ºC/W
Flatpack Package	70°C/W	20°C/W
Maximum Package Power Dissipation (PI	D) at +125°C	
For TA = -55°C to +100°C (Package Ty	pe D, F, K)	500mW
For TA = +100°C to +125°C (Package	Type D, F, K)	Derate
Linear	ity at 12mW/ ^c	^o C to 200mW
Device Dissipation per Output Transistor		100mW
For TA Full Deckege Temperature De	nan (All Dool	ana Tunaa)

For TA = Full Package Temperature Range (All Package Types) Junction Temperature+175°C

		BOL CONDITIONS (NOTE 1)		GROUP A		LIM	ITS	
PARAMETER	SYMBOL			SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	IDD VDD = 20V, VIN = VDD or GND		1	+25°C	-	0.5	μA
				2	+125°C	-	50	μA
		VDD = 18V, VIN = VDI	D or GND	3	-55°C	-	0.5	μΑ
Input Leakage Current	IIL	VC = VDD or GND		1	+25°C	-100	-	nA
				2	+125°C	-1000	-	nA
				3	-55°C	-100	-	nA
Input Leakage Current	IIH	VC = VDD or GND		1	+25°C	-	100	nA
				2	+125°C	-	1000	nA
				3	-55°C	-	100	nA
Input/Output Leakage	IOZL	VC = 0V, VIS = 18V,	VDD = 20	1	+25°C	-100	-	nA
Current (Switch OFF)		VOS = 0V, VIS = 0V, VOS = 18V		2	+125°C	-1000	-	nA
			VDD = 18V	3	-55°C	-100	-	nA
	IOZH		VDD = 20	1	+25°C	-	100	nA
				2	+125°C	-	1000	nA
			VDD = 18V	3	-55°C	-	100	nA
On Resistance	RON5	VC = VDD, RL = 10kW returned to VDD - VSS/2	VDD = 5V	1	+25°C	1050	-	Ω
	RON10		VDD = 10V	1	+25°C	400	-	Ω
	RON15	VIS = VSS to VDD	VDD = 15V	1	+25°C	240	-	Ω
On Resistance	RON5	VDD = 5V		1, 2	+125°C	-	1300	Ω
					-55°C	-	800	Ω
On Resistance	RON10	VDD = 10V		1, 2	+125°C	-	550	Ω
					-55°C	-	310	Ω
On Resistance	RON15	5 VDD = 15V		1, 2	+125°C	-	320	Ω
					-55°C	-	220	Ω
Functional	F	VDD = 2.8V, VIN = VD	D or GND	7	+25°C	VOH >	VOL <	V
(Note 3)		VDD = 20V, VIN = VDI	D or GND	7	+25°C	VDD/2	VDD/2	
		VDD = 18V, VIN = VDI	D or GND	8A	+125°C			
		VDD = 3V, VIN = VDD	or GND	8B	-55°C			
Switch Threshold	SWTHRH5	VDD = 5V, VC = 1.5V,	VIS = GND	1, 2, 3	+25°C, +125°C, -55°C	4.1	-	V
RL = 100k to VDD	SWTHRH15	VDD = 15V, VC = 2V, V	VIS = GND	1, 2, 3	+25°C, +125°C, -55°C	14.1	-	V
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10µ	ιA	1	+25°C	-2.8	-0.7	V
P Threshold Voltage	VPTH	VSS = 0V, IDD = 10µA		1	+25°C	0.7	2.8	V

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

			GROUP A		LIMITS		
PARAMETER	SYMBOL	CONDITIONS (NOTE 1)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Control Input Low	VILC5	VDD = 5V	1, 2, 3	+25°C, +125°C, -55°C	-	1	V
Voltage (Note 2) IIS < 10μa, VIS = VSS, VOS = VDD and VIS = VDD, VOS = VSS	VILC15	VDD = 15V	1, 2, 3	+25°C, +125°C, -55°C	-	2	V
Control Input High VI Voltage (Note 2, Figure 2) VIS = VSS and VIS = VDD	VIHC	VDD = 5V, IIS = .51mA, 4.6V < VOS < 0.4V	1	+25 ^o C	3.5	-	V
		VDD = 5V, IIS = .36mA, 4.6V < VOS < 0.4V	2	+125°C	3.5	-	V
		VDD = 5V, IIS = .64mA, 4.6V < VOS < 0.4V	3	-55°C	3.5	-	V
	VIHC	VDD = 15V, IIS = 3.4mA, 13.5V < VOS <1.5V	1	+25 ⁰ C	11	-	V
		VDD = 15V, IIS = 2.4mA, 13.5V < VOS < 1.5V	2	+125°C	11	-	V
		VDD = 15V, IIS = 4.2mA, 13.5V < VOS <1.5V	3	-55°C	11	-	V

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

NOTES:1. All voltages referenced to device GND, 100% testing being
implemented.3. VDD = 2.8V/3.0V, RL = 100K to VDD
VDD = 20V/18V, RL = 10K to VDD

2. Go/No Go test with limits applied to inputs.

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

			GROUP A		LIM	IITS	
PARAMETER	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Propagation Delay	1	VC = VDD = 5V, VSS = GND	9	+25°C	-	40	ns
Signal Input to Signal Output	TPHL	(Notes 2, 3)	10, 11	+125°C, -55°C	-	54	ns
Propagation Delay		VIS = VDD = 5V (Notes 1, 2)	9	+25°C	-	70	ns
Turn-On, Turn-Off	TPLZ/ZL		10, 11	+125°C, -55°C	-	95	ns

NOTES:

1. CL = 50pF, RL = 1K, Input TR, TF < 20ns.

2. -55° C and $+125^{\circ}$ C limits guaranteed, 100% testing being implemented.

.

3. CL = 50pF, RL = 200K, Input TR, TF < 20ns.

TABLE 3. ELECTRICAL PERFOR	MANCE CHARACTERISTICS
----------------------------	-----------------------

					LIMITS		
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	
Supply Current	IDD	VDD = 5V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	0.25	μA
				+125°C	-	7.5	μΑ
		VDD = 10V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	0.5	μΑ
				+125°C	-	15	μΑ
		VDD = 15V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	0.5	μΑ
				+125°C	-	30	μΑ
Control Input Low Voltage IIS < 10µa, VIS = VSS, VOS = VDD and VIS = VDD, VOS = VSS	VILC10	VDD = 10V	1, 2	+25°C, +125°C, -55°C	-	2	V

					LIM	IITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	
Control Input High Voltage (See Figure 2)	VIHC10	VDD = 10V, VIS = VDD or GND	2	+25°C, +125°C, -55°C	7	-	V
Propagation Delay	TPLH	VDD = 10V	1, 2, 3	+25°C	-	20	ns
Signal Input to Signal Output	TPHL	VDD = 15V	1, 2, 3	+25°C	-	15	ns
Propagation Delay	TPHZ/ZH	VDD = 10V	1, 2, 3	+25°C	-	40	ns
Turn-On, Turn-Off	TPLZ/ZL	VDD = 15V	1, 2, 3	+25°C	-	30	ns
Input Capacitance	CIN	Any Input	1, 2	+25°C	-	7.5	pF

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

NOTES:

1. All voltages referenced to device GND.

2. The parameters listed on Table 3 are controlled via design or process and are not directly tested. These parameters are characterized on initial design release and upon design changes which would affect these characteristics.

3. CL = 50pF, RL = 200K, Input TR, TF < 20ns.

TABLE 4. POST IRRADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS

		LIMITS		IITS			
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VDD or GND	1, 4	+25°C	-	25	μA
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10µA	1, 4	+25°C	-2.8	-0.2	V
N Threshold Voltage Delta	ΔVTN	VDD = 10V, ISS = -10µA	1, 4	+25°C	-	±1	V
P Threshold Voltage	VTP	VSS = 0V, IDD = 10µA	1, 4	+25°C	0.2	2.8	V
P Threshold Voltage Delta	ΔVTP	VSS = 0V, IDD = 10µA	1, 4	+25°C	-	±1	V
Functional	F	VDD = 18V, VIN = VDD or GND	1	+25°C	VOH >	VOL <	V
		VDD = 3V, VIN = VDD or GND			VDD/2	VDD/2	
Propagation Delay Time	TPHL TPLH	VDD = 5V	1, 2, 3, 4	+25°C	-	1.35 x +25°C Limit	ns

NOTES: 1. All voltages referenced to device GND.

2. CL = 50pF, RL = 200K, Input TR, TF < 20ns.

3. See Table 2 for +25°C limit.

4. Read and Record

TABLE 5. BURN-IN AND LIFE TEST DELTA PARAMETERS +25°C

PARAMETER	SYMBOL	DELTA LIMIT
Supply Current - SSI	IDD	±0.1µA
ON Resistance	RONDEL10	± 20% x Pre-Test Reading

TABLE 6. APPLICABLE SUBGROUPS

CONFORMANCE GROUP	MIL-STD-883 METHOD	GROUP A SUBGROUPS	READ AND RECORD
Initial Test (Pre Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A, RONDEL10
Interim Test 1 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A, RONDEL10
Interim Test 2 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A, RONDEL10
PDA (Note 1)	100% 5004	1, 7, 9, Deltas	
Interim Test 3 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A, RONDEL10
PDA (Note 1)	100% 5004	1, 7, 9, Deltas	

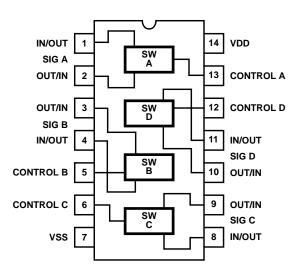
TABLE 6. APPLICABLE SUBGROUPS (Continued)					
CONFORMANCE GROUP		MIL-STD-883 METHOD	GROUP A SUBGROUPS	READ AND RECORD	
Final Test		100% 5004	2, 3, 8A, 8B, 10, 11		
Group A		Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11		
Group B	Subgroup B-5	Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11, Deltas	Subgroups 1, 2, 3, 9, 10, 11	
	Subgroup B-6	Sample 5005	1, 7, 9		
Group D		Sample 5005	1, 2, 3, 8A, 8B, 9	Subgroups 1, 2 3	

NOTE: 1.5% Parameteric, 3% Functional; Cumulative for Static 1 and 2.

TABLE 7. TOTAL DOSE IRRADIATION

	MIL-STD-883	TEST		READ AND RECORD	
CONFORMANCE GROUPS	METHOD	PRE-IRRAD	POST-IRRAD	PRE-IRRAD	POST-IRRAD
Group E Subgroup 2	5005	1, 7, 9	Table 4	1, 9	Table 4

TABLE 8. BURN-IN AND IRRADIATION TEST CONNECTIONS

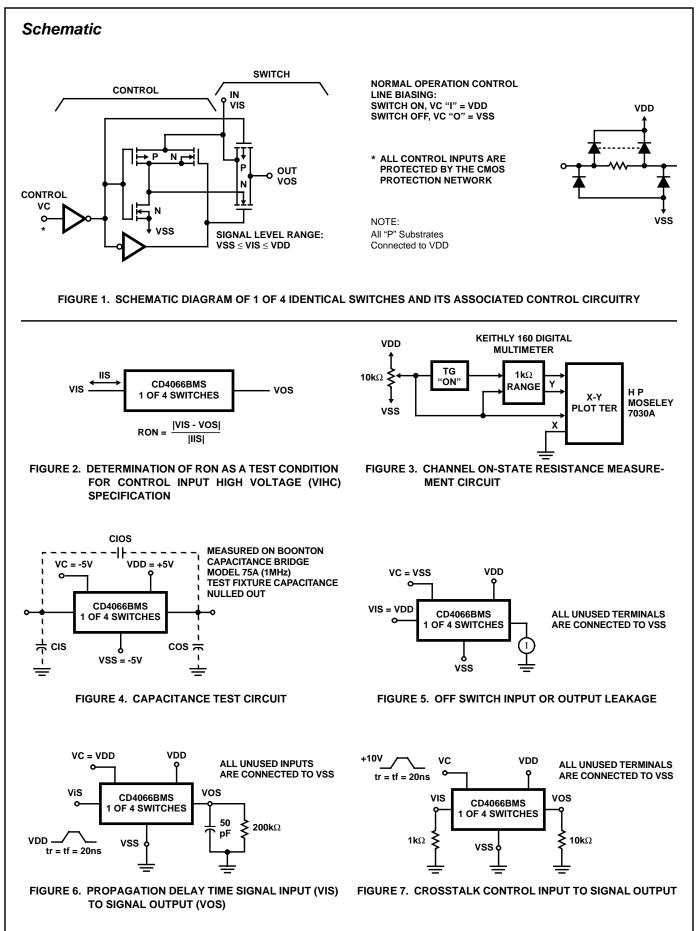

					OSCILLATOR	
FUNCTION	OPEN	GROUND	VDD	$9V \pm -0.5V$	50kHz	25kHz
Static Burn-In 1 (Note 1)	2, 3, 9, 10	1, 4-8, 11-13	14			
Static Burn-In 2 (Note 1)	2, 3, 9, 10	7	1, 4-6, 8, 11-14			
Dynamic Burn-In (Note 1)	-	7	14	2, 3, 9, 10	5, 6, 12, 13	1, 4, 8, 11
Irradiation (Note 2)	2, 3, 9, 10	7	1, 4-6, 8, 11-14			

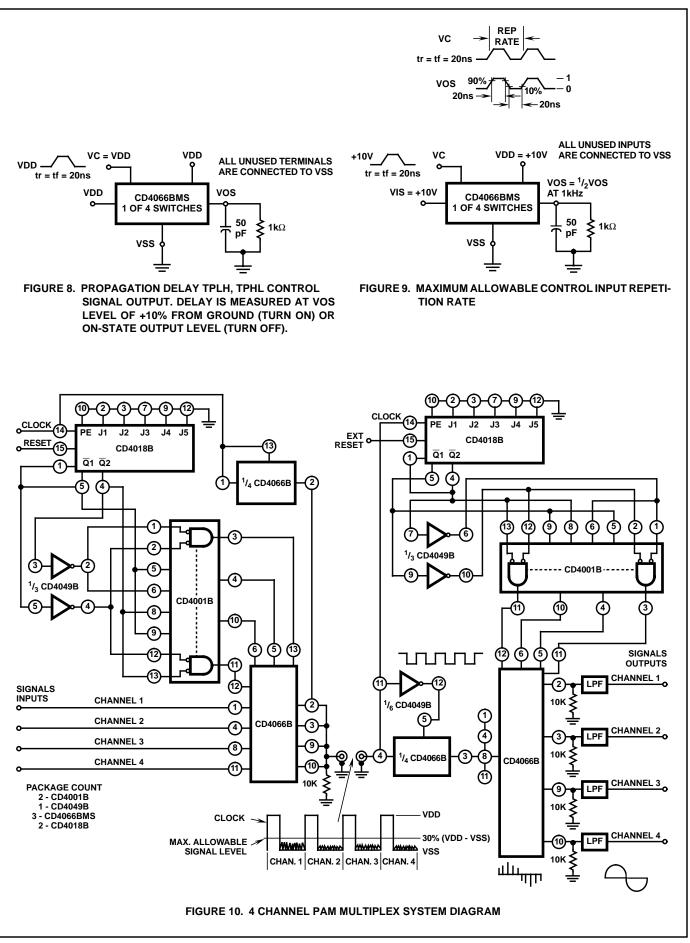
NOTE:

1. Each pin except VDD and GND will have a series resistor of 10K \pm 5%, VDD = 18V \pm 0.5V

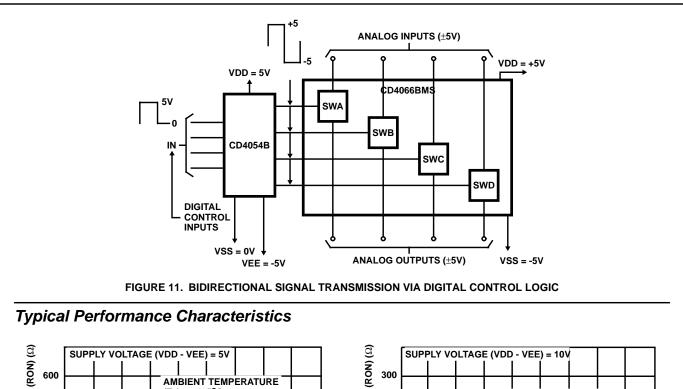
2. Each pin except VDD and GND will have a series resistor of 47K ± 5%; Group E, Subgroup 2, sample size is 4 dice/wafer, 0 failures, VDD $= 10\dot{V} \pm 0.5V$

Functional Diagram

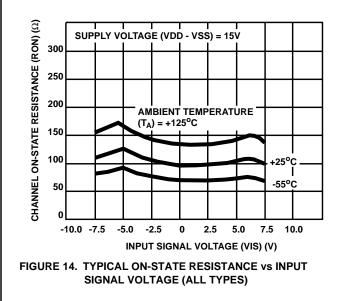

TRUTH TABLE EACH SWITCH				
INI	OUTPUT			
VC	VIS	VOS		
1	0	0		
1	1	1		
0	0	Open		
0	1	Open		


Positive Logic: Switch ON VC = "1" Switch OFF VC = "0"

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.


Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

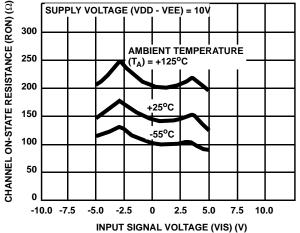
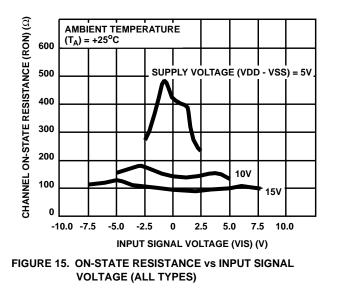
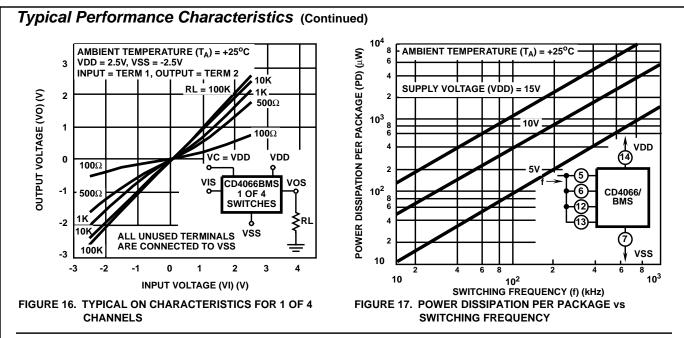
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com

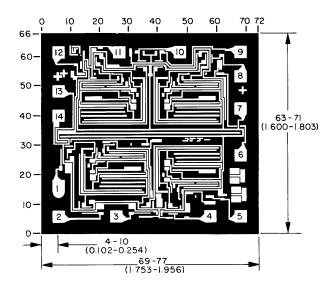


CD4066BMS

CHANNEL ON-STATE RESISTANCE (RON) (Ω) $(T_A) = +125^{\circ}C$ 500 400 300 +25°C 200 -55°C 100 0 -4 -3 -2 -1 0 1 2 3 4 INPUT SIGNAL VOLTAGE (VIS) (V)

FIGURE 12. TYPICAL ON-STATE RESISTANCE vs INPUT SIGNAL VOLTAGE (ALL TYPES)


FIGURE 13. TYPICAL ON-STATE vs INPUT SIGNAL VOLTAGE (ALL TYPES).

CD4066BMS

Chip Dimensions and Pad Layout

Dimensions in parenthesis are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3} inch).

Special Considerations

In applications that employ separate power sources to drive VDD and the signal inputs, the VDD current capability should exceed VDD/RL (RL = effective external load of the four CD4066B bilateral switches). This provision avoids any permanent current flow or clamp action on the VDD supply when power is applied or removed from the CD4066B.

In certain applications, the external load-resistor current may include both VDD and signal line components. To avoid drawing VDD current when switch current flows into terminals 1, 4, 8 or 11 the voltage drop across the bidirectional switch must not exceed 0.8 volts (calculated from RON values shown). No VDD current will flow through RL if the switch current flows into terminals 2, 3, 9, or 10.

METALLIZATION: Thickness: 11kÅ – 14kÅ, AL. PASSIVATION: 10.4kÅ - 15.6kÅ, Silane BOND PADS: 0.004 inches X 0.004 inches MIN DIE THICKNESS: 0.0198 inches - 0.0218 inches